{"title":"通过光血栓形成模拟短暂性脑缺血发作","authors":"Y N Kalyuzhnaya, A M Khaitin, S V Demyanenko","doi":"10.1007/s12551-023-01121-1","DOIUrl":null,"url":null,"abstract":"<p><p>The health significance of transient ischemic attacks (TIAs) is largely underestimated. Often, TIAs are not given significant importance, and in vain, because TIAs are a predictor of the development of serious cardiovascular diseases and even death. Because of this, and because of the difficulty in diagnosing the disease, TIAs and related microinfarcts are poorly investigated. Photothrombotic models of stroke and TIA allow reproducing the occlusion of small brain vessels, even single ones. When dosing the concentration of photosensitizer, intensity and irradiation time, it is possible to achieve occlusion of well-defined small vessels with high reproducibility, and with the help of modern methods of blood flow assessment it is possible to achieve spontaneous restoration of blood flow without vessel rupture. In this review, we discuss the features of microinfarcts and the contemporary experimental approaches used to model TIA and microinfarcts, with an emphasis on models using the principle of photothrombosis of brain vessels. We review modern techniques for in vivo detection of blood flow in small brain vessels, as well as biomarkers of microinfarcts.</p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10643708/pdf/","citationCount":"0","resultStr":"{\"title\":\"Modeling transient ischemic attack via photothrombosis.\",\"authors\":\"Y N Kalyuzhnaya, A M Khaitin, S V Demyanenko\",\"doi\":\"10.1007/s12551-023-01121-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The health significance of transient ischemic attacks (TIAs) is largely underestimated. Often, TIAs are not given significant importance, and in vain, because TIAs are a predictor of the development of serious cardiovascular diseases and even death. Because of this, and because of the difficulty in diagnosing the disease, TIAs and related microinfarcts are poorly investigated. Photothrombotic models of stroke and TIA allow reproducing the occlusion of small brain vessels, even single ones. When dosing the concentration of photosensitizer, intensity and irradiation time, it is possible to achieve occlusion of well-defined small vessels with high reproducibility, and with the help of modern methods of blood flow assessment it is possible to achieve spontaneous restoration of blood flow without vessel rupture. In this review, we discuss the features of microinfarcts and the contemporary experimental approaches used to model TIA and microinfarcts, with an emphasis on models using the principle of photothrombosis of brain vessels. We review modern techniques for in vivo detection of blood flow in small brain vessels, as well as biomarkers of microinfarcts.</p>\",\"PeriodicalId\":9094,\"journal\":{\"name\":\"Biophysical reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10643708/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12551-023-01121-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12551-023-01121-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Modeling transient ischemic attack via photothrombosis.
The health significance of transient ischemic attacks (TIAs) is largely underestimated. Often, TIAs are not given significant importance, and in vain, because TIAs are a predictor of the development of serious cardiovascular diseases and even death. Because of this, and because of the difficulty in diagnosing the disease, TIAs and related microinfarcts are poorly investigated. Photothrombotic models of stroke and TIA allow reproducing the occlusion of small brain vessels, even single ones. When dosing the concentration of photosensitizer, intensity and irradiation time, it is possible to achieve occlusion of well-defined small vessels with high reproducibility, and with the help of modern methods of blood flow assessment it is possible to achieve spontaneous restoration of blood flow without vessel rupture. In this review, we discuss the features of microinfarcts and the contemporary experimental approaches used to model TIA and microinfarcts, with an emphasis on models using the principle of photothrombosis of brain vessels. We review modern techniques for in vivo detection of blood flow in small brain vessels, as well as biomarkers of microinfarcts.
期刊介绍:
Biophysical Reviews aims to publish critical and timely reviews from key figures in the field of biophysics. The bulk of the reviews that are currently published are from invited authors, but the journal is also open for non-solicited reviews. Interested authors are encouraged to discuss the possibility of contributing a review with the Editor-in-Chief prior to submission. Through publishing reviews on biophysics, the editors of the journal hope to illustrate the great power and potential of physical techniques in the biological sciences, they aim to stimulate the discussion and promote further research and would like to educate and enthuse basic researcher scientists and students of biophysics. Biophysical Reviews covers the entire field of biophysics, generally defined as the science of describing and defining biological phenomenon using the concepts and the techniques of physics. This includes but is not limited by such areas as: - Bioinformatics - Biophysical methods and instrumentation - Medical biophysics - Biosystems - Cell biophysics and organization - Macromolecules: dynamics, structures and interactions - Single molecule biophysics - Membrane biophysics, channels and transportation