Keru Hou , Kaili Jin , Zhuizhui Fan , Peibo Du , Yating Ji , Jun Wang , Yaping Zhao , Chengjian Yao , Zaisheng Cai
{"title":"可调水包油乳液分离、悬浮过滤和染料去除用织物基膜的简易制备","authors":"Keru Hou , Kaili Jin , Zhuizhui Fan , Peibo Du , Yating Ji , Jun Wang , Yaping Zhao , Chengjian Yao , Zaisheng Cai","doi":"10.1016/j.seppur.2023.124467","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Special wettability fabrics-based membranes have shown excellent performance in emulsified oil/water separation, however, their application in separating industrial oil-in-water emulsions still remains a great challenge due to the complexity of multifarious </span>surfactant components. In this work, we demonstrate a simple and facile approach to fabricate fabric-based membranes (P(AM-DMC-AA)@CFs) for complex emulsified oil/water (printing and dyeing wastewater) separation with combining the advantage of amphoteric </span>polyacrylamide<span><span><span> layer and cotton fabric in a single system. The amphoteric polyacrylamide surface and tortuous fabric channels synergistically provide the membranes with demulsification adjustability for separating emulsified oil in water which stabilized by anionic/cationic surfactants. Meanwhile, the incorporating of amphoteric polyacrylamide into cotton fabrics had remarkable advantages of both flexible and stable superhydrophilic/underwater superoleophobic. Consequently, the obtained P(AM-DMC-AA)@CFs membranes are endowed with robust superhydrophilicity, underwater superoleophobicity and switchable </span>zeta potential, which make it capable of highly efficient separation of oil/water emulsion (anionic: 94.05%, cationic: 96.19%), suspension filtration (kaolin: 89.5%, </span>hematite<span>: 93.1%,) and concurrent dye removal in 5 min (14.3 mg/g). In addition, the prepared membrane is still effective in separating simulated printing and dyeing wastewater containing multiple pollutants. The facile and versatile design of the P(AM-DMC-AA)@CFs membrane offers new prospects for exploiting fabric-based membranes with extraordinary features for industrial oily wastewater treatment.</span></span></p></div>","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"323 ","pages":"Article 124467"},"PeriodicalIF":8.1000,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Facile fabrication of fabric-based membrane for adjustable oil-in-water emulsion separation, suspension filtration and dye removal\",\"authors\":\"Keru Hou , Kaili Jin , Zhuizhui Fan , Peibo Du , Yating Ji , Jun Wang , Yaping Zhao , Chengjian Yao , Zaisheng Cai\",\"doi\":\"10.1016/j.seppur.2023.124467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Special wettability fabrics-based membranes have shown excellent performance in emulsified oil/water separation, however, their application in separating industrial oil-in-water emulsions still remains a great challenge due to the complexity of multifarious </span>surfactant components. In this work, we demonstrate a simple and facile approach to fabricate fabric-based membranes (P(AM-DMC-AA)@CFs) for complex emulsified oil/water (printing and dyeing wastewater) separation with combining the advantage of amphoteric </span>polyacrylamide<span><span><span> layer and cotton fabric in a single system. The amphoteric polyacrylamide surface and tortuous fabric channels synergistically provide the membranes with demulsification adjustability for separating emulsified oil in water which stabilized by anionic/cationic surfactants. Meanwhile, the incorporating of amphoteric polyacrylamide into cotton fabrics had remarkable advantages of both flexible and stable superhydrophilic/underwater superoleophobic. Consequently, the obtained P(AM-DMC-AA)@CFs membranes are endowed with robust superhydrophilicity, underwater superoleophobicity and switchable </span>zeta potential, which make it capable of highly efficient separation of oil/water emulsion (anionic: 94.05%, cationic: 96.19%), suspension filtration (kaolin: 89.5%, </span>hematite<span>: 93.1%,) and concurrent dye removal in 5 min (14.3 mg/g). In addition, the prepared membrane is still effective in separating simulated printing and dyeing wastewater containing multiple pollutants. The facile and versatile design of the P(AM-DMC-AA)@CFs membrane offers new prospects for exploiting fabric-based membranes with extraordinary features for industrial oily wastewater treatment.</span></span></p></div>\",\"PeriodicalId\":427,\"journal\":{\"name\":\"Separation and Purification Technology\",\"volume\":\"323 \",\"pages\":\"Article 124467\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2023-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Separation and Purification Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1383586623013758\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383586623013758","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Facile fabrication of fabric-based membrane for adjustable oil-in-water emulsion separation, suspension filtration and dye removal
Special wettability fabrics-based membranes have shown excellent performance in emulsified oil/water separation, however, their application in separating industrial oil-in-water emulsions still remains a great challenge due to the complexity of multifarious surfactant components. In this work, we demonstrate a simple and facile approach to fabricate fabric-based membranes (P(AM-DMC-AA)@CFs) for complex emulsified oil/water (printing and dyeing wastewater) separation with combining the advantage of amphoteric polyacrylamide layer and cotton fabric in a single system. The amphoteric polyacrylamide surface and tortuous fabric channels synergistically provide the membranes with demulsification adjustability for separating emulsified oil in water which stabilized by anionic/cationic surfactants. Meanwhile, the incorporating of amphoteric polyacrylamide into cotton fabrics had remarkable advantages of both flexible and stable superhydrophilic/underwater superoleophobic. Consequently, the obtained P(AM-DMC-AA)@CFs membranes are endowed with robust superhydrophilicity, underwater superoleophobicity and switchable zeta potential, which make it capable of highly efficient separation of oil/water emulsion (anionic: 94.05%, cationic: 96.19%), suspension filtration (kaolin: 89.5%, hematite: 93.1%,) and concurrent dye removal in 5 min (14.3 mg/g). In addition, the prepared membrane is still effective in separating simulated printing and dyeing wastewater containing multiple pollutants. The facile and versatile design of the P(AM-DMC-AA)@CFs membrane offers new prospects for exploiting fabric-based membranes with extraordinary features for industrial oily wastewater treatment.
期刊介绍:
Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.