{"title":"BCS-AE:基于AE和块CS的集成图像压缩加密模型","authors":"S. Jameel, Jafar Majidpour","doi":"10.1142/s021946782350047x","DOIUrl":null,"url":null,"abstract":"For Compressive Sensing problems, a number of techniques have been introduced, including traditional compressed-sensing (CS) image reconstruction and Deep Neural Network (DNN) models. Unfortunately, due to low sampling rates, the quality of image reconstruction is still poor. This paper proposes a lossy image compression model (i.e. BCS-AE), which combines two different types to produce a model that uses more high-quality low-bitrate CS reconstruction. Initially, block-based compressed sensing (BCS) was utilized, and it was done one block at a time by the same operator. It can correctly extract images with complex geometric configurations. Second, we create an AutoEncoder architecture to replace traditional transforms, and we train it with a rate-distortion loss function. The proposed model is trained and then tested on the CelebA and Kodak databases. According to the results, advanced deep learning-based and iterative optimization-based algorithms perform better in terms of compression ratio and reconstruction quality.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BCS-AE: Integrated Image Compression-Encryption Model Based on AE and Block-CS\",\"authors\":\"S. Jameel, Jafar Majidpour\",\"doi\":\"10.1142/s021946782350047x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For Compressive Sensing problems, a number of techniques have been introduced, including traditional compressed-sensing (CS) image reconstruction and Deep Neural Network (DNN) models. Unfortunately, due to low sampling rates, the quality of image reconstruction is still poor. This paper proposes a lossy image compression model (i.e. BCS-AE), which combines two different types to produce a model that uses more high-quality low-bitrate CS reconstruction. Initially, block-based compressed sensing (BCS) was utilized, and it was done one block at a time by the same operator. It can correctly extract images with complex geometric configurations. Second, we create an AutoEncoder architecture to replace traditional transforms, and we train it with a rate-distortion loss function. The proposed model is trained and then tested on the CelebA and Kodak databases. According to the results, advanced deep learning-based and iterative optimization-based algorithms perform better in terms of compression ratio and reconstruction quality.\",\"PeriodicalId\":44688,\"journal\":{\"name\":\"International Journal of Image and Graphics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Image and Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s021946782350047x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s021946782350047x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
BCS-AE: Integrated Image Compression-Encryption Model Based on AE and Block-CS
For Compressive Sensing problems, a number of techniques have been introduced, including traditional compressed-sensing (CS) image reconstruction and Deep Neural Network (DNN) models. Unfortunately, due to low sampling rates, the quality of image reconstruction is still poor. This paper proposes a lossy image compression model (i.e. BCS-AE), which combines two different types to produce a model that uses more high-quality low-bitrate CS reconstruction. Initially, block-based compressed sensing (BCS) was utilized, and it was done one block at a time by the same operator. It can correctly extract images with complex geometric configurations. Second, we create an AutoEncoder architecture to replace traditional transforms, and we train it with a rate-distortion loss function. The proposed model is trained and then tested on the CelebA and Kodak databases. According to the results, advanced deep learning-based and iterative optimization-based algorithms perform better in terms of compression ratio and reconstruction quality.