周期流的拓扑特征

IF 0.5 4区 数学 Q4 MATHEMATICS, APPLIED
Khadija Ben Rejeb
{"title":"周期流的拓扑特征","authors":"Khadija Ben Rejeb","doi":"10.1080/14689367.2022.2130033","DOIUrl":null,"url":null,"abstract":"Let be a continuous flow of homeomorphisms of a connected n-manifold M. The flow G is called periodic if: for some real s>0, . A global section for a flow G is a closed subset K of M such that every orbit under G intersects K in exactly one point. In this paper, we give a topological characterization of periodic flows with global sections for . Next, we consider periodic flows defined on any connected n-manifold M, and we give a similar local characterization.","PeriodicalId":50564,"journal":{"name":"Dynamical Systems-An International Journal","volume":"38 1","pages":"20 - 29"},"PeriodicalIF":0.5000,"publicationDate":"2022-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A topological characterization of periodic flows\",\"authors\":\"Khadija Ben Rejeb\",\"doi\":\"10.1080/14689367.2022.2130033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let be a continuous flow of homeomorphisms of a connected n-manifold M. The flow G is called periodic if: for some real s>0, . A global section for a flow G is a closed subset K of M such that every orbit under G intersects K in exactly one point. In this paper, we give a topological characterization of periodic flows with global sections for . Next, we consider periodic flows defined on any connected n-manifold M, and we give a similar local characterization.\",\"PeriodicalId\":50564,\"journal\":{\"name\":\"Dynamical Systems-An International Journal\",\"volume\":\"38 1\",\"pages\":\"20 - 29\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamical Systems-An International Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/14689367.2022.2130033\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamical Systems-An International Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2022.2130033","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

设为连通n-流形M的同胚的连续流。流G称为周期流,如果:对于一些实s>0。流G的全局截面是M的闭子集K,使得G下的每个轨道正好在一个点上与K相交。本文给出了具有全局截面的周期流的拓扑特征。接下来,我们考虑定义在任何连通n流形M上的周期流,并给出了类似的局部特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A topological characterization of periodic flows
Let be a continuous flow of homeomorphisms of a connected n-manifold M. The flow G is called periodic if: for some real s>0, . A global section for a flow G is a closed subset K of M such that every orbit under G intersects K in exactly one point. In this paper, we give a topological characterization of periodic flows with global sections for . Next, we consider periodic flows defined on any connected n-manifold M, and we give a similar local characterization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: Dynamical Systems: An International Journal is a world-leading journal acting as a forum for communication across all branches of modern dynamical systems, and especially as a platform to facilitate interaction between theory and applications. This journal publishes high quality research articles in the theory and applications of dynamical systems, especially (but not exclusively) nonlinear systems. Advances in the following topics are addressed by the journal: •Differential equations •Bifurcation theory •Hamiltonian and Lagrangian dynamics •Hyperbolic dynamics •Ergodic theory •Topological and smooth dynamics •Random dynamical systems •Applications in technology, engineering and natural and life sciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信