Muhammad Jawaz, M. A. Rehman, N. Ahmed, D. Baleanu, M. Iqbal, M. Rafiq, A. Raza
{"title":"具有扩散的时滞狂犬病流行模型分析及数值效应","authors":"Muhammad Jawaz, M. A. Rehman, N. Ahmed, D. Baleanu, M. Iqbal, M. Rafiq, A. Raza","doi":"10.1515/ijnsns-2021-0233","DOIUrl":null,"url":null,"abstract":"Abstract The current work is devoted to investigating the disease dynamics and numerical modeling for the delay diffusion infectious rabies model. To this end, a non-linear diffusive rabies model with delay count is considered. Parameters involved in the model are also described. Equilibrium points of the model are determined and their role in studying the disease dynamics is identified. The basic reproduction number is also studied. Before going towards the numerical technique, the definite existence of the solution is ensured with the help of the Schauder fixed point theorem. A standard result for the uniqueness of the solution is also established. Mapping properties and relative compactness of the operator are studied. The proposed finite difference method is introduced by applying the rules defined by R.E. Mickens. Stability analysis of the proposed method is done by implementing the Von–Neumann method. Taylor’s expansion approach is enforced to examine the consistency of the said method. All the important facts of the proposed numerical device are investigated by presenting the appropriate numerical test example and computer simulations. The effect of τ on infected individuals is also examined, graphically. Moreover, a fruitful conclusion of the study is submitted.","PeriodicalId":50304,"journal":{"name":"International Journal of Nonlinear Sciences and Numerical Simulation","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analysis and numerical effects of time-delayed rabies epidemic model with diffusion\",\"authors\":\"Muhammad Jawaz, M. A. Rehman, N. Ahmed, D. Baleanu, M. Iqbal, M. Rafiq, A. Raza\",\"doi\":\"10.1515/ijnsns-2021-0233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The current work is devoted to investigating the disease dynamics and numerical modeling for the delay diffusion infectious rabies model. To this end, a non-linear diffusive rabies model with delay count is considered. Parameters involved in the model are also described. Equilibrium points of the model are determined and their role in studying the disease dynamics is identified. The basic reproduction number is also studied. Before going towards the numerical technique, the definite existence of the solution is ensured with the help of the Schauder fixed point theorem. A standard result for the uniqueness of the solution is also established. Mapping properties and relative compactness of the operator are studied. The proposed finite difference method is introduced by applying the rules defined by R.E. Mickens. Stability analysis of the proposed method is done by implementing the Von–Neumann method. Taylor’s expansion approach is enforced to examine the consistency of the said method. All the important facts of the proposed numerical device are investigated by presenting the appropriate numerical test example and computer simulations. The effect of τ on infected individuals is also examined, graphically. Moreover, a fruitful conclusion of the study is submitted.\",\"PeriodicalId\":50304,\"journal\":{\"name\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijnsns-2021-0233\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Sciences and Numerical Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2021-0233","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Analysis and numerical effects of time-delayed rabies epidemic model with diffusion
Abstract The current work is devoted to investigating the disease dynamics and numerical modeling for the delay diffusion infectious rabies model. To this end, a non-linear diffusive rabies model with delay count is considered. Parameters involved in the model are also described. Equilibrium points of the model are determined and their role in studying the disease dynamics is identified. The basic reproduction number is also studied. Before going towards the numerical technique, the definite existence of the solution is ensured with the help of the Schauder fixed point theorem. A standard result for the uniqueness of the solution is also established. Mapping properties and relative compactness of the operator are studied. The proposed finite difference method is introduced by applying the rules defined by R.E. Mickens. Stability analysis of the proposed method is done by implementing the Von–Neumann method. Taylor’s expansion approach is enforced to examine the consistency of the said method. All the important facts of the proposed numerical device are investigated by presenting the appropriate numerical test example and computer simulations. The effect of τ on infected individuals is also examined, graphically. Moreover, a fruitful conclusion of the study is submitted.
期刊介绍:
The International Journal of Nonlinear Sciences and Numerical Simulation publishes original papers on all subjects relevant to nonlinear sciences and numerical simulation. The journal is directed at Researchers in Nonlinear Sciences, Engineers, and Computational Scientists, Economists, and others, who either study the nature of nonlinear problems or conduct numerical simulations of nonlinear problems.