树枝状、无底、延伸结构的直径和长度对水库冲沙效率影响的实验研究

IF 2.4 3区 环境科学与生态学 Q2 ENGINEERING, CIVIL
Hadi Haghjouei , Majid Rahimpour , Kourosh Qaderi , Sameh A. Kantoush , Sepideh Beiramipour
{"title":"树枝状、无底、延伸结构的直径和长度对水库冲沙效率影响的实验研究","authors":"Hadi Haghjouei ,&nbsp;Majid Rahimpour ,&nbsp;Kourosh Qaderi ,&nbsp;Sameh A. Kantoush ,&nbsp;Sepideh Beiramipour","doi":"10.1016/j.jher.2022.09.002","DOIUrl":null,"url":null,"abstract":"<div><p>Sedimentation in front of a dam is the main obstacle against reservoir sustainability. Due to the limited availability of suitable new dam sites, the ramifications of inefficient sediment management are associated with socio-economic concerns and environmental issues. Most of the existing sediment management techniques are unfavorable for arid and semi-arid regions due to their impacts on available water storage and power generation. Therefore, pressure flushing is an economical desilting method as it releases little water through the bottom outlet. However, one of the main disadvantages of pressurized flushing is limited sediment removal near the bottom outlet. In this paper, the impacts of a dendritic, bottomless, and extended (DBE) structure were investigated to develop the scour cone to a broader area. Several experiments were carried out with four different diameters (125, 160, 200, and 250 mm), four different lengths (30, 50, 80, and 110 cm), and three discharge rates (12.5, 15, and 18 L/s), to identify the dimensions of the extended structure with the most efficient operation. The results indicated that the DBE structure with a length dimensionless index of <span><math><mrow><msub><mi>L</mi><mrow><mi>DBE</mi></mrow></msub><mo>/</mo><msub><mi>D</mi><mi>o</mi></msub><mo>=</mo><mn>10</mn><mo>,</mo></mrow></math></span> a diameter dimensionless index of <span><math><mrow><msub><mi>D</mi><mrow><mi>DBE</mi></mrow></msub><mo>/</mo><msub><mi>D</mi><mi>o</mi></msub><mo>=</mo><mn>1.14</mn></mrow></math></span>, and an outflow discharge dimensionless index of <span><math><mrow><msub><mrow><mi>Fr</mi></mrow><mi>o</mi></msub><mo>=</mo><mn>1.82</mn></mrow></math></span>, yielded a 36.55-fold increase in the sediment flushing cone dimensions and sediment removal efficiency compared to a reference test. Finally, a dimensionless equation is presented for calculating the sediment flushing cone dimensions, according to a statistical analysis of the results. Two diagrams are provided to illustrate the interrelationship between the distance limits of scour, length, and diameter of the structure and outlet discharges.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"45 ","pages":"Pages 15-28"},"PeriodicalIF":2.4000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Experimental investigation of the diameter and length effects of the dendritic, bottomless, extended structure on reservoir sediment removal efficiency by flushing\",\"authors\":\"Hadi Haghjouei ,&nbsp;Majid Rahimpour ,&nbsp;Kourosh Qaderi ,&nbsp;Sameh A. Kantoush ,&nbsp;Sepideh Beiramipour\",\"doi\":\"10.1016/j.jher.2022.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sedimentation in front of a dam is the main obstacle against reservoir sustainability. Due to the limited availability of suitable new dam sites, the ramifications of inefficient sediment management are associated with socio-economic concerns and environmental issues. Most of the existing sediment management techniques are unfavorable for arid and semi-arid regions due to their impacts on available water storage and power generation. Therefore, pressure flushing is an economical desilting method as it releases little water through the bottom outlet. However, one of the main disadvantages of pressurized flushing is limited sediment removal near the bottom outlet. In this paper, the impacts of a dendritic, bottomless, and extended (DBE) structure were investigated to develop the scour cone to a broader area. Several experiments were carried out with four different diameters (125, 160, 200, and 250 mm), four different lengths (30, 50, 80, and 110 cm), and three discharge rates (12.5, 15, and 18 L/s), to identify the dimensions of the extended structure with the most efficient operation. The results indicated that the DBE structure with a length dimensionless index of <span><math><mrow><msub><mi>L</mi><mrow><mi>DBE</mi></mrow></msub><mo>/</mo><msub><mi>D</mi><mi>o</mi></msub><mo>=</mo><mn>10</mn><mo>,</mo></mrow></math></span> a diameter dimensionless index of <span><math><mrow><msub><mi>D</mi><mrow><mi>DBE</mi></mrow></msub><mo>/</mo><msub><mi>D</mi><mi>o</mi></msub><mo>=</mo><mn>1.14</mn></mrow></math></span>, and an outflow discharge dimensionless index of <span><math><mrow><msub><mrow><mi>Fr</mi></mrow><mi>o</mi></msub><mo>=</mo><mn>1.82</mn></mrow></math></span>, yielded a 36.55-fold increase in the sediment flushing cone dimensions and sediment removal efficiency compared to a reference test. Finally, a dimensionless equation is presented for calculating the sediment flushing cone dimensions, according to a statistical analysis of the results. Two diagrams are provided to illustrate the interrelationship between the distance limits of scour, length, and diameter of the structure and outlet discharges.</p></div>\",\"PeriodicalId\":49303,\"journal\":{\"name\":\"Journal of Hydro-environment Research\",\"volume\":\"45 \",\"pages\":\"Pages 15-28\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydro-environment Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570644322000570\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydro-environment Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570644322000570","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 3

摘要

大坝前的沉积是水库可持续性的主要障碍。由于合适的新水坝地点有限,沉积物管理效率低下的后果与社会经济问题和环境问题有关。现有的泥沙治理技术对干旱半干旱区的有效蓄水量和发电能力影响较大,不利于干旱半干旱区的治理。因此,压力冲洗是一种经济的除淤方法,因为它通过底部出口释放的水很少。然而,加压冲洗的主要缺点之一是底部出口附近的沉积物去除有限。本文研究了树枝状无底延伸结构(DBE)对扩展冲刷锥的影响。在4种不同直径(125、160、200和250 mm)、4种不同长度(30、50、80和110 cm)和3种流量(12.5、15和18 L/s)的情况下进行了多次实验,以确定最有效运行的扩展结构尺寸。结果表明:长度无量纲指数为LDBE/Do=10,直径无量纲指数为DDBE/Do=1.14,流出流量无量纲指数为Fro=1.82的DBE结构,冲沙锥尺寸和除沙效率比参考试验提高了36.55倍。最后,通过对结果的统计分析,提出了计算冲沙锥尺寸的无因次方程。提供了两个图来说明冲刷距离限制、结构长度和直径与出口流量之间的相互关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental investigation of the diameter and length effects of the dendritic, bottomless, extended structure on reservoir sediment removal efficiency by flushing

Sedimentation in front of a dam is the main obstacle against reservoir sustainability. Due to the limited availability of suitable new dam sites, the ramifications of inefficient sediment management are associated with socio-economic concerns and environmental issues. Most of the existing sediment management techniques are unfavorable for arid and semi-arid regions due to their impacts on available water storage and power generation. Therefore, pressure flushing is an economical desilting method as it releases little water through the bottom outlet. However, one of the main disadvantages of pressurized flushing is limited sediment removal near the bottom outlet. In this paper, the impacts of a dendritic, bottomless, and extended (DBE) structure were investigated to develop the scour cone to a broader area. Several experiments were carried out with four different diameters (125, 160, 200, and 250 mm), four different lengths (30, 50, 80, and 110 cm), and three discharge rates (12.5, 15, and 18 L/s), to identify the dimensions of the extended structure with the most efficient operation. The results indicated that the DBE structure with a length dimensionless index of LDBE/Do=10, a diameter dimensionless index of DDBE/Do=1.14, and an outflow discharge dimensionless index of Fro=1.82, yielded a 36.55-fold increase in the sediment flushing cone dimensions and sediment removal efficiency compared to a reference test. Finally, a dimensionless equation is presented for calculating the sediment flushing cone dimensions, according to a statistical analysis of the results. Two diagrams are provided to illustrate the interrelationship between the distance limits of scour, length, and diameter of the structure and outlet discharges.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydro-environment Research
Journal of Hydro-environment Research ENGINEERING, CIVIL-ENVIRONMENTAL SCIENCES
CiteScore
5.80
自引率
0.00%
发文量
34
审稿时长
98 days
期刊介绍: The journal aims to provide an international platform for the dissemination of research and engineering applications related to water and hydraulic problems in the Asia-Pacific region. The journal provides a wide distribution at affordable subscription rate, as well as a rapid reviewing and publication time. The journal particularly encourages papers from young researchers. Papers that require extensive language editing, qualify for editorial assistance with American Journal Experts, a Language Editing Company that Elsevier recommends. Authors submitting to this journal are entitled to a 10% discount.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信