P. Lewalle, C. Elouard, S. Manikandan, X. Qian, J. Eberly, A. Jordan
{"title":"一对量子发射器通过连续荧光测量的纠缠:教程","authors":"P. Lewalle, C. Elouard, S. Manikandan, X. Qian, J. Eberly, A. Jordan","doi":"10.1364/AOP.399081","DOIUrl":null,"url":null,"abstract":"We propose a measurement protocol to generate quantum entanglement between two remote qubits, through joint homodyne detection of their spontaneous emission. The quadrature measurement scheme we propose is a realistic two-qubit extension of existing experiments which obtain quantum trajectories by homodyning or heterodyning a superconducting qubit's spontaneous emission. We develop a model for the two qubit case, and simulate stochastic quantum trajectories for a variety of measurement protocols; we use this tool to compare our proposed homodyne scheme with the comparable photodetection-based Bell state measurement, and heterodyne detection-based scheme. We discuss the quantum trajectories and concurrence dynamics in detail across a variety of example measurements. As with previously known measurement-based entanglement strategies, the entanglement yield between our qubits corresponds to our ability to erase information distinguishing certain two-qubit states from the signal. We demonstrate that the photon which-path information acquisition, and therefore the entanglement yield, is tunable under our homodyne detection scheme, generating at best equivalent average entanglement dynamics as in the comparable photodetection case. By contrast, heterodyne detection at each output after mixing fluorescence signals makes this information erasure impossible, and generates no entanglement between the qubits.","PeriodicalId":48960,"journal":{"name":"Advances in Optics and Photonics","volume":null,"pages":null},"PeriodicalIF":25.2000,"publicationDate":"2019-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Entanglement of a pair of quantum emitters via continuous fluorescence measurements: a tutorial\",\"authors\":\"P. Lewalle, C. Elouard, S. Manikandan, X. Qian, J. Eberly, A. Jordan\",\"doi\":\"10.1364/AOP.399081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a measurement protocol to generate quantum entanglement between two remote qubits, through joint homodyne detection of their spontaneous emission. The quadrature measurement scheme we propose is a realistic two-qubit extension of existing experiments which obtain quantum trajectories by homodyning or heterodyning a superconducting qubit's spontaneous emission. We develop a model for the two qubit case, and simulate stochastic quantum trajectories for a variety of measurement protocols; we use this tool to compare our proposed homodyne scheme with the comparable photodetection-based Bell state measurement, and heterodyne detection-based scheme. We discuss the quantum trajectories and concurrence dynamics in detail across a variety of example measurements. As with previously known measurement-based entanglement strategies, the entanglement yield between our qubits corresponds to our ability to erase information distinguishing certain two-qubit states from the signal. We demonstrate that the photon which-path information acquisition, and therefore the entanglement yield, is tunable under our homodyne detection scheme, generating at best equivalent average entanglement dynamics as in the comparable photodetection case. By contrast, heterodyne detection at each output after mixing fluorescence signals makes this information erasure impossible, and generates no entanglement between the qubits.\",\"PeriodicalId\":48960,\"journal\":{\"name\":\"Advances in Optics and Photonics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":25.2000,\"publicationDate\":\"2019-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Optics and Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/AOP.399081\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Optics and Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/AOP.399081","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Entanglement of a pair of quantum emitters via continuous fluorescence measurements: a tutorial
We propose a measurement protocol to generate quantum entanglement between two remote qubits, through joint homodyne detection of their spontaneous emission. The quadrature measurement scheme we propose is a realistic two-qubit extension of existing experiments which obtain quantum trajectories by homodyning or heterodyning a superconducting qubit's spontaneous emission. We develop a model for the two qubit case, and simulate stochastic quantum trajectories for a variety of measurement protocols; we use this tool to compare our proposed homodyne scheme with the comparable photodetection-based Bell state measurement, and heterodyne detection-based scheme. We discuss the quantum trajectories and concurrence dynamics in detail across a variety of example measurements. As with previously known measurement-based entanglement strategies, the entanglement yield between our qubits corresponds to our ability to erase information distinguishing certain two-qubit states from the signal. We demonstrate that the photon which-path information acquisition, and therefore the entanglement yield, is tunable under our homodyne detection scheme, generating at best equivalent average entanglement dynamics as in the comparable photodetection case. By contrast, heterodyne detection at each output after mixing fluorescence signals makes this information erasure impossible, and generates no entanglement between the qubits.
期刊介绍:
Advances in Optics and Photonics (AOP) is an all-electronic journal that publishes comprehensive review articles and multimedia tutorials. It is suitable for students, researchers, faculty, business professionals, and engineers interested in optics and photonics. The content of the journal covers advancements in these fields, ranging from fundamental science to engineering applications.
The journal aims to capture the most significant developments in optics and photonics. It achieves this through long review articles and comprehensive tutorials written by prominent and respected authors who are at the forefront of their fields.
The journal goes beyond traditional text-based articles by enhancing the content with multimedia elements, such as animation and video. This multimedia approach helps to enhance the understanding and visualization of complex concepts.
AOP offers dedicated article preparation and peer-review support to assist authors throughout the publication process. This support ensures that the articles meet the journal's standards and are well-received by readers.
Additionally, AOP welcomes comments on published review articles, encouraging further discussions and insights from the scientific community.
In summary, Advances in Optics and Photonics is a comprehensive journal that provides authoritative and accessible content on advancements in optics and photonics. With its diverse range of articles, multimedia enhancements, and dedicated support, AOP serves as a valuable resource for professionals and researchers in these fields.