Xin Lu, Osmane Camara, Zigeng Liu, Anna Windmüller, Chih-Long Tsai, Hermann Tempel, Shicheng Yu, Hans Kungl, Rüdiger-A. Eichel
{"title":"多相β - Li 3ps4固体电解质材料的水分稳定性","authors":"Xin Lu, Osmane Camara, Zigeng Liu, Anna Windmüller, Chih-Long Tsai, Hermann Tempel, Shicheng Yu, Hans Kungl, Rüdiger-A. Eichel","doi":"10.1002/elsa.202100208","DOIUrl":null,"url":null,"abstract":"<p>Efficiently improving the moisture stability of β-Li<sub>3</sub>PS<sub>4</sub> materials could significantly reduce production costs and eventually enable the mass application. Nanoporous multiphase β-Li<sub>3</sub>PS<sub>4</sub> materials prepared via solvent-assistant routes usually contain solvent or solvent decomposition segments associated with the amorphous Li<sub>3</sub>PS<sub>4</sub> phase in their structures. Herein, the solvent ethyl propionate (EP) remains in the β-Li<sub>3</sub>PS<sub>4</sub> even after 220 h of annealing at 220°C. The possibility of tuning the moisture stability of β-Li<sub>3</sub>PS<sub>4</sub> by adjusting the content of the solvent is investigated by environmental scanning electron microscopy (ESEM) combined with other structural analysis techniques. The results demonstrated that the hydrogen-containing amorphous Li<sub>3</sub>PS<sub>4</sub> not only stabilizes the β-phase at room temperature but also improves the moisture stability of the material. Although the rapid hydrolysis occurs on the surface of solvent-containing β-Li<sub>3</sub>PS<sub>4</sub> materials under ambient conditions within 10 s, with 4 wt% EP content, the material can be exposed to 1.6% relative humidity (R.H.) for at least 8 h without any structural or microstructural change. Even with the lower amount of EP (1.2 wt%) in the Li<sub>3</sub>PS<sub>4</sub> structure, the material can withstand 1% R.H. for more than 8 h, which allows the material to be manufactured in a dry room. Our observation proposes a simple method to slightly modify the moisture stability of β-Li<sub>3</sub>PS<sub>4</sub> to match the different manufacturing conditions.</p>","PeriodicalId":93746,"journal":{"name":"Electrochemical science advances","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2022-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsa.202100208","citationCount":"3","resultStr":"{\"title\":\"Tuning the moisture stability of multiphase β-Li3PS4 solid electrolyte materials\",\"authors\":\"Xin Lu, Osmane Camara, Zigeng Liu, Anna Windmüller, Chih-Long Tsai, Hermann Tempel, Shicheng Yu, Hans Kungl, Rüdiger-A. Eichel\",\"doi\":\"10.1002/elsa.202100208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Efficiently improving the moisture stability of β-Li<sub>3</sub>PS<sub>4</sub> materials could significantly reduce production costs and eventually enable the mass application. Nanoporous multiphase β-Li<sub>3</sub>PS<sub>4</sub> materials prepared via solvent-assistant routes usually contain solvent or solvent decomposition segments associated with the amorphous Li<sub>3</sub>PS<sub>4</sub> phase in their structures. Herein, the solvent ethyl propionate (EP) remains in the β-Li<sub>3</sub>PS<sub>4</sub> even after 220 h of annealing at 220°C. The possibility of tuning the moisture stability of β-Li<sub>3</sub>PS<sub>4</sub> by adjusting the content of the solvent is investigated by environmental scanning electron microscopy (ESEM) combined with other structural analysis techniques. The results demonstrated that the hydrogen-containing amorphous Li<sub>3</sub>PS<sub>4</sub> not only stabilizes the β-phase at room temperature but also improves the moisture stability of the material. Although the rapid hydrolysis occurs on the surface of solvent-containing β-Li<sub>3</sub>PS<sub>4</sub> materials under ambient conditions within 10 s, with 4 wt% EP content, the material can be exposed to 1.6% relative humidity (R.H.) for at least 8 h without any structural or microstructural change. Even with the lower amount of EP (1.2 wt%) in the Li<sub>3</sub>PS<sub>4</sub> structure, the material can withstand 1% R.H. for more than 8 h, which allows the material to be manufactured in a dry room. Our observation proposes a simple method to slightly modify the moisture stability of β-Li<sub>3</sub>PS<sub>4</sub> to match the different manufacturing conditions.</p>\",\"PeriodicalId\":93746,\"journal\":{\"name\":\"Electrochemical science advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsa.202100208\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemical science advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/elsa.202100208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemical science advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elsa.202100208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Tuning the moisture stability of multiphase β-Li3PS4 solid electrolyte materials
Efficiently improving the moisture stability of β-Li3PS4 materials could significantly reduce production costs and eventually enable the mass application. Nanoporous multiphase β-Li3PS4 materials prepared via solvent-assistant routes usually contain solvent or solvent decomposition segments associated with the amorphous Li3PS4 phase in their structures. Herein, the solvent ethyl propionate (EP) remains in the β-Li3PS4 even after 220 h of annealing at 220°C. The possibility of tuning the moisture stability of β-Li3PS4 by adjusting the content of the solvent is investigated by environmental scanning electron microscopy (ESEM) combined with other structural analysis techniques. The results demonstrated that the hydrogen-containing amorphous Li3PS4 not only stabilizes the β-phase at room temperature but also improves the moisture stability of the material. Although the rapid hydrolysis occurs on the surface of solvent-containing β-Li3PS4 materials under ambient conditions within 10 s, with 4 wt% EP content, the material can be exposed to 1.6% relative humidity (R.H.) for at least 8 h without any structural or microstructural change. Even with the lower amount of EP (1.2 wt%) in the Li3PS4 structure, the material can withstand 1% R.H. for more than 8 h, which allows the material to be manufactured in a dry room. Our observation proposes a simple method to slightly modify the moisture stability of β-Li3PS4 to match the different manufacturing conditions.