大规模多线程计算中工作窃取的性能分析

IF 0.7 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Nikki Sonenberg, Grzegorz Kielanski, B. Van Houdt
{"title":"大规模多线程计算中工作窃取的性能分析","authors":"Nikki Sonenberg, Grzegorz Kielanski, B. Van Houdt","doi":"10.1145/3470887","DOIUrl":null,"url":null,"abstract":"Randomized work stealing is used in distributed systems to increase performance and improve resource utilization. In this article, we consider randomized work stealing in a large system of homogeneous processors where parent jobs spawn child jobs that can feasibly be executed in parallel with the parent job. We analyse the performance of two work stealing strategies: one where only child jobs can be transferred across servers and the other where parent jobs are transferred. We define a mean-field model to derive the response time distribution in a large-scale system with Poisson arrivals and exponential parent and child job durations. We prove that the model has a unique fixed point that corresponds to the steady state of a structured Markov chain, allowing us to use matrix analytic methods to compute the unique fixed point. The accuracy of the mean-field model is validated using simulation. Using numerical examples, we illustrate the effect of different probe rates, load, and different child job size distributions on performance with respect to the two stealing strategies, individually, and compared to each other.","PeriodicalId":56350,"journal":{"name":"ACM Transactions on Modeling and Performance Evaluation of Computing Systems","volume":"6 1","pages":"1 - 28"},"PeriodicalIF":0.7000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Performance Analysis of Work Stealing in Large-scale Multithreaded Computing\",\"authors\":\"Nikki Sonenberg, Grzegorz Kielanski, B. Van Houdt\",\"doi\":\"10.1145/3470887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Randomized work stealing is used in distributed systems to increase performance and improve resource utilization. In this article, we consider randomized work stealing in a large system of homogeneous processors where parent jobs spawn child jobs that can feasibly be executed in parallel with the parent job. We analyse the performance of two work stealing strategies: one where only child jobs can be transferred across servers and the other where parent jobs are transferred. We define a mean-field model to derive the response time distribution in a large-scale system with Poisson arrivals and exponential parent and child job durations. We prove that the model has a unique fixed point that corresponds to the steady state of a structured Markov chain, allowing us to use matrix analytic methods to compute the unique fixed point. The accuracy of the mean-field model is validated using simulation. Using numerical examples, we illustrate the effect of different probe rates, load, and different child job size distributions on performance with respect to the two stealing strategies, individually, and compared to each other.\",\"PeriodicalId\":56350,\"journal\":{\"name\":\"ACM Transactions on Modeling and Performance Evaluation of Computing Systems\",\"volume\":\"6 1\",\"pages\":\"1 - 28\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Modeling and Performance Evaluation of Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3470887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Modeling and Performance Evaluation of Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3470887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

摘要

分布式系统中使用随机工作窃取来提高性能和提高资源利用率。在本文中,我们考虑了同构处理器的大型系统中的随机工作窃取,其中父作业生成的子作业可以与父作业并行执行。我们分析了两种工作窃取策略的性能:一种是只有子工作可以在服务器之间转移,另一种是父工作转移。我们定义了一个平均场模型来推导具有泊松到达和指数父子工作持续时间的大规模系统中的响应时间分布。我们证明了该模型具有一个唯一的不动点,该不动点对应于结构化马尔可夫链的稳态,使我们能够使用矩阵分析方法来计算该唯一不动点。通过仿真验证了平均场模型的准确性。通过数值示例,我们分别说明了不同的探测率、负载和不同的子任务大小分布对两种盗窃策略性能的影响,并进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Analysis of Work Stealing in Large-scale Multithreaded Computing
Randomized work stealing is used in distributed systems to increase performance and improve resource utilization. In this article, we consider randomized work stealing in a large system of homogeneous processors where parent jobs spawn child jobs that can feasibly be executed in parallel with the parent job. We analyse the performance of two work stealing strategies: one where only child jobs can be transferred across servers and the other where parent jobs are transferred. We define a mean-field model to derive the response time distribution in a large-scale system with Poisson arrivals and exponential parent and child job durations. We prove that the model has a unique fixed point that corresponds to the steady state of a structured Markov chain, allowing us to use matrix analytic methods to compute the unique fixed point. The accuracy of the mean-field model is validated using simulation. Using numerical examples, we illustrate the effect of different probe rates, load, and different child job size distributions on performance with respect to the two stealing strategies, individually, and compared to each other.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信