基于视频的降雨测量方法综述

IF 6.8 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Kang Yan, Hua Chen, L. Hu, Kailin Huang, Yu Huang, Zheng Wang, Bingyi Liu, Jun Wang, Shenglian Guo
{"title":"基于视频的降雨测量方法综述","authors":"Kang Yan, Hua Chen, L. Hu, Kailin Huang, Yu Huang, Zheng Wang, Bingyi Liu, Jun Wang, Shenglian Guo","doi":"10.1002/wat2.1678","DOIUrl":null,"url":null,"abstract":"Accurate and high spatiotemporal resolution rainfall observations are essential for hydrological forecasting and flood management, especially in urban hydrological applications. However, it is difficult for traditional rainfall gauges, weather radars, and satellites to accurately estimate rainfall while simultaneously capturing the spatial and temporal variability of rainfall well. In this context, video‐based rainfall measurement, a novel method, has the advantages of real‐time performance and low cost and may thus provide a new way to establish rainfall observation networks with high spatial and temporal resolution. In recent years, different algorithms have been developed to recognize raindrops and estimate rainfall from rainfall videos. It has been demonstrated that video‐based rainfall measurement methods can provide comprehensive rainfall information with fine spatial and temporal granularity. However, raindrop visibility and the depth of field effects are difficult to address. The motion blur effect of raindrops may result in substantial errors and uncertainties. A fundamental problem of video‐based rainfall measurements lies in locating raindrops and accurately calculating their actual size. Moreover, the effectiveness of deep learning‐based video rainfall measurement models is greatly influenced by the diversity of the training data. Therefore, enhancing the high robustness and accuracy of video‐based rainfall measurement algorithms and increasing the computational efficiency are paramount to further development, which are prerequisites for their application in practical rainfall monitoring and developing multicamera monitoring networks.","PeriodicalId":23774,"journal":{"name":"Wiley Interdisciplinary Reviews: Water","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A review of video‐based rainfall measurement methods\",\"authors\":\"Kang Yan, Hua Chen, L. Hu, Kailin Huang, Yu Huang, Zheng Wang, Bingyi Liu, Jun Wang, Shenglian Guo\",\"doi\":\"10.1002/wat2.1678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate and high spatiotemporal resolution rainfall observations are essential for hydrological forecasting and flood management, especially in urban hydrological applications. However, it is difficult for traditional rainfall gauges, weather radars, and satellites to accurately estimate rainfall while simultaneously capturing the spatial and temporal variability of rainfall well. In this context, video‐based rainfall measurement, a novel method, has the advantages of real‐time performance and low cost and may thus provide a new way to establish rainfall observation networks with high spatial and temporal resolution. In recent years, different algorithms have been developed to recognize raindrops and estimate rainfall from rainfall videos. It has been demonstrated that video‐based rainfall measurement methods can provide comprehensive rainfall information with fine spatial and temporal granularity. However, raindrop visibility and the depth of field effects are difficult to address. The motion blur effect of raindrops may result in substantial errors and uncertainties. A fundamental problem of video‐based rainfall measurements lies in locating raindrops and accurately calculating their actual size. Moreover, the effectiveness of deep learning‐based video rainfall measurement models is greatly influenced by the diversity of the training data. Therefore, enhancing the high robustness and accuracy of video‐based rainfall measurement algorithms and increasing the computational efficiency are paramount to further development, which are prerequisites for their application in practical rainfall monitoring and developing multicamera monitoring networks.\",\"PeriodicalId\":23774,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews: Water\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews: Water\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/wat2.1678\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Water","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/wat2.1678","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

A review of video‐based rainfall measurement methods

A review of video‐based rainfall measurement methods
Accurate and high spatiotemporal resolution rainfall observations are essential for hydrological forecasting and flood management, especially in urban hydrological applications. However, it is difficult for traditional rainfall gauges, weather radars, and satellites to accurately estimate rainfall while simultaneously capturing the spatial and temporal variability of rainfall well. In this context, video‐based rainfall measurement, a novel method, has the advantages of real‐time performance and low cost and may thus provide a new way to establish rainfall observation networks with high spatial and temporal resolution. In recent years, different algorithms have been developed to recognize raindrops and estimate rainfall from rainfall videos. It has been demonstrated that video‐based rainfall measurement methods can provide comprehensive rainfall information with fine spatial and temporal granularity. However, raindrop visibility and the depth of field effects are difficult to address. The motion blur effect of raindrops may result in substantial errors and uncertainties. A fundamental problem of video‐based rainfall measurements lies in locating raindrops and accurately calculating their actual size. Moreover, the effectiveness of deep learning‐based video rainfall measurement models is greatly influenced by the diversity of the training data. Therefore, enhancing the high robustness and accuracy of video‐based rainfall measurement algorithms and increasing the computational efficiency are paramount to further development, which are prerequisites for their application in practical rainfall monitoring and developing multicamera monitoring networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wiley Interdisciplinary Reviews: Water
Wiley Interdisciplinary Reviews: Water Environmental Science-Ecology
CiteScore
16.60
自引率
3.70%
发文量
56
期刊介绍: The WIREs series is truly unique, blending the best aspects of encyclopedic reference works and review journals into a dynamic online format. These remarkable resources foster a research culture that transcends disciplinary boundaries, all while upholding the utmost scientific and presentation excellence. However, they go beyond traditional publications and are, in essence, ever-evolving databases of the latest cutting-edge reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信