简单并发连通组件算法

Pub Date : 2022-07-08 DOI:10.1145/3543546
S. Liu, R. Tarjan
{"title":"简单并发连通组件算法","authors":"S. Liu, R. Tarjan","doi":"10.1145/3543546","DOIUrl":null,"url":null,"abstract":"We study a class of simple algorithms for concurrently computing the connected components of an n-vertex, m-edge graph. Our algorithms are easy to implement in either the COMBINING CRCW PRAM or the MPC computing model. For two related algorithms in this class, we obtain Θ (lg n) step and Θ (m lg n) work bounds.1 For two others, we obtain O(lg2 n) step and O(m lg2 n) work bounds, which are tight for one of them. All our algorithms are simpler than related algorithms in the literature. We also point out some gaps and errors in the analysis of previous algorithms. Our results show that even a basic problem like connected components still has secrets to reveal.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Simple Concurrent Connected Components Algorithms\",\"authors\":\"S. Liu, R. Tarjan\",\"doi\":\"10.1145/3543546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a class of simple algorithms for concurrently computing the connected components of an n-vertex, m-edge graph. Our algorithms are easy to implement in either the COMBINING CRCW PRAM or the MPC computing model. For two related algorithms in this class, we obtain Θ (lg n) step and Θ (m lg n) work bounds.1 For two others, we obtain O(lg2 n) step and O(m lg2 n) work bounds, which are tight for one of them. All our algorithms are simpler than related algorithms in the literature. We also point out some gaps and errors in the analysis of previous algorithms. Our results show that even a basic problem like connected components still has secrets to reveal.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3543546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3543546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们研究了一类同时计算n顶点、m边图的连通分量的简单算法。我们的算法很容易在组合CRCW PRAM或MPC计算模型中实现。对于这类中的两个相关算法,我们获得了θ(lgn)步长和θ(mlgn)功界。1对于另外两个算法,我们得到了O(lg2n)步长和O(mlg2n)功界,它们中的一个是紧的。我们所有的算法都比文献中的相关算法简单。我们还指出了在分析以前的算法时存在的一些差距和错误。我们的研究结果表明,即使是像连接组件这样的基本问题,仍然有秘密需要揭示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Simple Concurrent Connected Components Algorithms
We study a class of simple algorithms for concurrently computing the connected components of an n-vertex, m-edge graph. Our algorithms are easy to implement in either the COMBINING CRCW PRAM or the MPC computing model. For two related algorithms in this class, we obtain Θ (lg n) step and Θ (m lg n) work bounds.1 For two others, we obtain O(lg2 n) step and O(m lg2 n) work bounds, which are tight for one of them. All our algorithms are simpler than related algorithms in the literature. We also point out some gaps and errors in the analysis of previous algorithms. Our results show that even a basic problem like connected components still has secrets to reveal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信