基于遗传算法的正态分布参数估计及其在碳化深度中的应用

Q3 Mathematics
S. Boonthiem, Chatchai Sutikasana, W. Klongdee, W. Ieosanurak
{"title":"基于遗传算法的正态分布参数估计及其在碳化深度中的应用","authors":"S. Boonthiem, Chatchai Sutikasana, W. Klongdee, W. Ieosanurak","doi":"10.37394/23206.2023.22.23","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method for estimating Normal distribution parameters using genetic algorithm. The main purpose of this research is to identify the most efficient estimators among three estimators for Normal distribution; Maximum likelihood method (ML), the least square method (LS), and genetic algorithm (GA) via numerical simulation and three real data, carbonation depth of Concrete Girder Bridges data examples which are based on performance measures such as The Root Mean Square Error (RMSE), Kolmogorov-Smirnov test, and Chi squared test. The simulation studies are conducted to evaluate the performances of the proposed estimators and provide statistical analysis of the real data set. The numerical results, x^2, show that the genetic algorithm performs better than other methods for actual data and simulated data unless the sample size is small.","PeriodicalId":55878,"journal":{"name":"WSEAS Transactions on Mathematics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameter Estimations of Normal Distribution via Genetic Algorithm and Its Application to Carbonation Depth\",\"authors\":\"S. Boonthiem, Chatchai Sutikasana, W. Klongdee, W. Ieosanurak\",\"doi\":\"10.37394/23206.2023.22.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a method for estimating Normal distribution parameters using genetic algorithm. The main purpose of this research is to identify the most efficient estimators among three estimators for Normal distribution; Maximum likelihood method (ML), the least square method (LS), and genetic algorithm (GA) via numerical simulation and three real data, carbonation depth of Concrete Girder Bridges data examples which are based on performance measures such as The Root Mean Square Error (RMSE), Kolmogorov-Smirnov test, and Chi squared test. The simulation studies are conducted to evaluate the performances of the proposed estimators and provide statistical analysis of the real data set. The numerical results, x^2, show that the genetic algorithm performs better than other methods for actual data and simulated data unless the sample size is small.\",\"PeriodicalId\":55878,\"journal\":{\"name\":\"WSEAS Transactions on Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS Transactions on Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/23206.2023.22.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/23206.2023.22.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用遗传算法估计正态分布参数的方法。本研究的主要目的是通过数值模拟和三个真实数据,在正态分布的三种估计量中确定最有效的估计量:最大似然法(ML)、最小二乘法(LS)和遗传算法(GA),基于均方根误差(RMSE)、Kolmogorov-Smirnov检验和卡方检验等性能指标的混凝土梁桥碳化深度数据示例。进行模拟研究是为了评估所提出的估计器的性能,并提供真实数据集的统计分析。数值结果x^2表明,除非样本量较小,否则遗传算法对实际数据和模拟数据的性能优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter Estimations of Normal Distribution via Genetic Algorithm and Its Application to Carbonation Depth
In this paper, we propose a method for estimating Normal distribution parameters using genetic algorithm. The main purpose of this research is to identify the most efficient estimators among three estimators for Normal distribution; Maximum likelihood method (ML), the least square method (LS), and genetic algorithm (GA) via numerical simulation and three real data, carbonation depth of Concrete Girder Bridges data examples which are based on performance measures such as The Root Mean Square Error (RMSE), Kolmogorov-Smirnov test, and Chi squared test. The simulation studies are conducted to evaluate the performances of the proposed estimators and provide statistical analysis of the real data set. The numerical results, x^2, show that the genetic algorithm performs better than other methods for actual data and simulated data unless the sample size is small.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
WSEAS Transactions on Mathematics
WSEAS Transactions on Mathematics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.30
自引率
0.00%
发文量
93
期刊介绍: WSEAS Transactions on Mathematics publishes original research papers relating to applied and theoretical mathematics. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of these particular areas. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with linear algebra, numerical analysis, differential equations, statistics and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信