线性代数群上的平移不变线束

Pub Date : 2018-06-27 DOI:10.1090/jag/753
Zev Rosengarten
{"title":"线性代数群上的平移不变线束","authors":"Zev Rosengarten","doi":"10.1090/jag/753","DOIUrl":null,"url":null,"abstract":"We study the Picard groups of connected linear algebraic groups and especially the subgroup of translation-invariant line bundles. We prove that this subgroup is finite over every global function field. We also utilize our study of these groups in order to construct various examples of pathological behavior for the cohomology of commutative linear algebraic groups over local and global function fields.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Translation-invariant line bundles on linear algebraic groups\",\"authors\":\"Zev Rosengarten\",\"doi\":\"10.1090/jag/753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the Picard groups of connected linear algebraic groups and especially the subgroup of translation-invariant line bundles. We prove that this subgroup is finite over every global function field. We also utilize our study of these groups in order to construct various examples of pathological behavior for the cohomology of commutative linear algebraic groups over local and global function fields.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jag/753\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

研究了连通线性代数群的Picard群,特别是平移不变线束的子群。证明了这个子群在所有全局函数域上是有限的。我们也利用我们对这些群的研究来构造局部和全局函数域上交换线性代数群的病态行为的各种例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Translation-invariant line bundles on linear algebraic groups
We study the Picard groups of connected linear algebraic groups and especially the subgroup of translation-invariant line bundles. We prove that this subgroup is finite over every global function field. We also utilize our study of these groups in order to construct various examples of pathological behavior for the cohomology of commutative linear algebraic groups over local and global function fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信