{"title":"线性代数群上的平移不变线束","authors":"Zev Rosengarten","doi":"10.1090/jag/753","DOIUrl":null,"url":null,"abstract":"We study the Picard groups of connected linear algebraic groups and especially the subgroup of translation-invariant line bundles. We prove that this subgroup is finite over every global function field. We also utilize our study of these groups in order to construct various examples of pathological behavior for the cohomology of commutative linear algebraic groups over local and global function fields.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Translation-invariant line bundles on linear algebraic groups\",\"authors\":\"Zev Rosengarten\",\"doi\":\"10.1090/jag/753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the Picard groups of connected linear algebraic groups and especially the subgroup of translation-invariant line bundles. We prove that this subgroup is finite over every global function field. We also utilize our study of these groups in order to construct various examples of pathological behavior for the cohomology of commutative linear algebraic groups over local and global function fields.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jag/753\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Translation-invariant line bundles on linear algebraic groups
We study the Picard groups of connected linear algebraic groups and especially the subgroup of translation-invariant line bundles. We prove that this subgroup is finite over every global function field. We also utilize our study of these groups in order to construct various examples of pathological behavior for the cohomology of commutative linear algebraic groups over local and global function fields.