Chuan Guo , Gan Li , Sheng Li , Xiaogang Hu , Hongxing Lu , Xinggang Li , Zhen Xu , Yuhan Chen , Qingqing Li , Jian Lu , Qiang Zhu
{"title":"镍基高温合金的增材制造:残余应力、裂纹形成机制和裂纹抑制策略","authors":"Chuan Guo , Gan Li , Sheng Li , Xiaogang Hu , Hongxing Lu , Xinggang Li , Zhen Xu , Yuhan Chen , Qingqing Li , Jian Lu , Qiang Zhu","doi":"10.1016/j.nanoms.2022.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>The additive manufacturing (AM) of Ni-based superalloys has attracted extensive interest from both academia and industry due to its unique capabilities to fabricate complex and high-performance components for use in high-end industrial systems. However, the intense temperature gradient induced by the rapid heating and cooling processes of AM can generate high levels of residual stress and metastable chemical and structural states, inevitably leading to severe metallurgical defects in Ni-based superalloys. Cracks are the greatest threat to these materials’ integrity as they can rapidly propagate and thereby cause sudden and non-predictable failure. Consequently, there is a need for a deeper understanding of residual stress and cracking mechanisms in additively manufactured Ni-based superalloys and ways to potentially prevent cracking, as this knowledge will enable the wider application of these unique materials. To this end, this paper comprehensively reviews the residual stress and the various mechanisms of crack formation in Ni-based superalloys during AM. In addition, several common methods for inhibiting crack formation are presented to assist the research community to develop methods for the fabrication of crack-free additively manufactured components.</p></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"5 1","pages":"Pages 53-77"},"PeriodicalIF":9.9000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Additive manufacturing of Ni-based superalloys: Residual stress, mechanisms of crack formation and strategies for crack inhibition\",\"authors\":\"Chuan Guo , Gan Li , Sheng Li , Xiaogang Hu , Hongxing Lu , Xinggang Li , Zhen Xu , Yuhan Chen , Qingqing Li , Jian Lu , Qiang Zhu\",\"doi\":\"10.1016/j.nanoms.2022.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The additive manufacturing (AM) of Ni-based superalloys has attracted extensive interest from both academia and industry due to its unique capabilities to fabricate complex and high-performance components for use in high-end industrial systems. However, the intense temperature gradient induced by the rapid heating and cooling processes of AM can generate high levels of residual stress and metastable chemical and structural states, inevitably leading to severe metallurgical defects in Ni-based superalloys. Cracks are the greatest threat to these materials’ integrity as they can rapidly propagate and thereby cause sudden and non-predictable failure. Consequently, there is a need for a deeper understanding of residual stress and cracking mechanisms in additively manufactured Ni-based superalloys and ways to potentially prevent cracking, as this knowledge will enable the wider application of these unique materials. To this end, this paper comprehensively reviews the residual stress and the various mechanisms of crack formation in Ni-based superalloys during AM. In addition, several common methods for inhibiting crack formation are presented to assist the research community to develop methods for the fabrication of crack-free additively manufactured components.</p></div>\",\"PeriodicalId\":33573,\"journal\":{\"name\":\"Nano Materials Science\",\"volume\":\"5 1\",\"pages\":\"Pages 53-77\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Materials Science\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589965122000460\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965122000460","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Additive manufacturing of Ni-based superalloys: Residual stress, mechanisms of crack formation and strategies for crack inhibition
The additive manufacturing (AM) of Ni-based superalloys has attracted extensive interest from both academia and industry due to its unique capabilities to fabricate complex and high-performance components for use in high-end industrial systems. However, the intense temperature gradient induced by the rapid heating and cooling processes of AM can generate high levels of residual stress and metastable chemical and structural states, inevitably leading to severe metallurgical defects in Ni-based superalloys. Cracks are the greatest threat to these materials’ integrity as they can rapidly propagate and thereby cause sudden and non-predictable failure. Consequently, there is a need for a deeper understanding of residual stress and cracking mechanisms in additively manufactured Ni-based superalloys and ways to potentially prevent cracking, as this knowledge will enable the wider application of these unique materials. To this end, this paper comprehensively reviews the residual stress and the various mechanisms of crack formation in Ni-based superalloys during AM. In addition, several common methods for inhibiting crack formation are presented to assist the research community to develop methods for the fabrication of crack-free additively manufactured components.
期刊介绍:
Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.