{"title":"利用机器学习和基于物理的方法进行高周热疲劳监测的超声温度监测的比较","authors":"Laurence Clarkson, Yifeng Zhang, F. Cegla","doi":"10.1177/14759217231190041","DOIUrl":null,"url":null,"abstract":"Failure of pipe network components in so-called mixing zones due to high-cycle thermal fatigue (HCTF) can occur within nuclear power plants where fluids of different thermal and hydraulic properties interact. Given that the consequences of such failures are potentially deadly, a method to monitor HCTF non-invasively in real-time is expected to be of great use. This method may be realised by a technique to determine the inaccessible temperature distribution of a component since thermal gradients drive HCTF. Previous work showed that a physics-based method called the inverse thermal modelling (ITM) method can obtain the temperature distribution from external temperature and ultrasonic time of flight (TOF) measurements. This study investigated whether the long-short-term memory (LSTM) machine learning architecture could be a faster alternative to the ITM method for data inversion. On experimental data, a 25-member ensemble of LSTM networks achieved an ensemble median root mean square error (RMSE) of 1.04°C and an ensemble median mean error of 0.194°C (both relative to a resistance temperature device measurement). These values are similar to the ITM method which achieved a RMSE of 1.04°C and a mean error of 0.196°C. The single LSTM network and the ITM method achieved a computation-to-real-world time ratio of 0.008% and 14%, respectively demonstrating that both methods can invert data in real-time. Simulation studies revealed that LSTM performance is sensitive to small differences between the training and real-world parameters leading to unacceptable errors. However, these errors can be detected via an ensemble of independent networks and, corrected by simply adding a correction factor to the TOF prior to being input into the networks. The results show that LSTM has the potential to be an alternative to the ITM method; however, the authors favour ITM for temperature distribution monitoring given its interpretability.","PeriodicalId":51184,"journal":{"name":"Structural Health Monitoring-An International Journal","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparison of ultrasonic temperature monitoring using machine learning and physics-based methods for high-cycle thermal fatigue monitoring\",\"authors\":\"Laurence Clarkson, Yifeng Zhang, F. Cegla\",\"doi\":\"10.1177/14759217231190041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Failure of pipe network components in so-called mixing zones due to high-cycle thermal fatigue (HCTF) can occur within nuclear power plants where fluids of different thermal and hydraulic properties interact. Given that the consequences of such failures are potentially deadly, a method to monitor HCTF non-invasively in real-time is expected to be of great use. This method may be realised by a technique to determine the inaccessible temperature distribution of a component since thermal gradients drive HCTF. Previous work showed that a physics-based method called the inverse thermal modelling (ITM) method can obtain the temperature distribution from external temperature and ultrasonic time of flight (TOF) measurements. This study investigated whether the long-short-term memory (LSTM) machine learning architecture could be a faster alternative to the ITM method for data inversion. On experimental data, a 25-member ensemble of LSTM networks achieved an ensemble median root mean square error (RMSE) of 1.04°C and an ensemble median mean error of 0.194°C (both relative to a resistance temperature device measurement). These values are similar to the ITM method which achieved a RMSE of 1.04°C and a mean error of 0.196°C. The single LSTM network and the ITM method achieved a computation-to-real-world time ratio of 0.008% and 14%, respectively demonstrating that both methods can invert data in real-time. Simulation studies revealed that LSTM performance is sensitive to small differences between the training and real-world parameters leading to unacceptable errors. However, these errors can be detected via an ensemble of independent networks and, corrected by simply adding a correction factor to the TOF prior to being input into the networks. The results show that LSTM has the potential to be an alternative to the ITM method; however, the authors favour ITM for temperature distribution monitoring given its interpretability.\",\"PeriodicalId\":51184,\"journal\":{\"name\":\"Structural Health Monitoring-An International Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Health Monitoring-An International Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/14759217231190041\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Health Monitoring-An International Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14759217231190041","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A comparison of ultrasonic temperature monitoring using machine learning and physics-based methods for high-cycle thermal fatigue monitoring
Failure of pipe network components in so-called mixing zones due to high-cycle thermal fatigue (HCTF) can occur within nuclear power plants where fluids of different thermal and hydraulic properties interact. Given that the consequences of such failures are potentially deadly, a method to monitor HCTF non-invasively in real-time is expected to be of great use. This method may be realised by a technique to determine the inaccessible temperature distribution of a component since thermal gradients drive HCTF. Previous work showed that a physics-based method called the inverse thermal modelling (ITM) method can obtain the temperature distribution from external temperature and ultrasonic time of flight (TOF) measurements. This study investigated whether the long-short-term memory (LSTM) machine learning architecture could be a faster alternative to the ITM method for data inversion. On experimental data, a 25-member ensemble of LSTM networks achieved an ensemble median root mean square error (RMSE) of 1.04°C and an ensemble median mean error of 0.194°C (both relative to a resistance temperature device measurement). These values are similar to the ITM method which achieved a RMSE of 1.04°C and a mean error of 0.196°C. The single LSTM network and the ITM method achieved a computation-to-real-world time ratio of 0.008% and 14%, respectively demonstrating that both methods can invert data in real-time. Simulation studies revealed that LSTM performance is sensitive to small differences between the training and real-world parameters leading to unacceptable errors. However, these errors can be detected via an ensemble of independent networks and, corrected by simply adding a correction factor to the TOF prior to being input into the networks. The results show that LSTM has the potential to be an alternative to the ITM method; however, the authors favour ITM for temperature distribution monitoring given its interpretability.
期刊介绍:
Structural Health Monitoring is an international peer reviewed journal that publishes the highest quality original research that contain theoretical, analytical, and experimental investigations that advance the body of knowledge and its application in the discipline of structural health monitoring.