Miao Wang , Jiayu Zhang , Jiaruo Tang , Xiaomeng Cai , Rui Dou , Chen Guo , Yi Hu , Jun Chen
{"title":"GM-CSF和DOX共递送纳米平台调节巨噬细胞极化以促进肿瘤抑制","authors":"Miao Wang , Jiayu Zhang , Jiaruo Tang , Xiaomeng Cai , Rui Dou , Chen Guo , Yi Hu , Jun Chen","doi":"10.1016/j.jciso.2023.100081","DOIUrl":null,"url":null,"abstract":"<div><p>The immunosuppressive tumor microenvironment often compromises chemotherapeutic efficacy. Tumor-associated macrophages (TAM) are a critical component of the tumor immune microenvironment, a large portion of which is in M2-polarization with immunosuppressive effects. Priming the TAM to M1 polarization is a promising strategy for reversing the immunosuppressive microenvironment for promoting tumor therapy. In this study, a co-delivery nanoplatform that integrates GM-CSF as an immune adjuvant with chemotherapy of DOX has been developed to enhance the efficacy of cancer therapy. The photothermal effect from embedded single-walled carbon nanotubes (SWCNTs) controlled the release of GM-CSF and DOX. The results of MB49 cells verified that the GM-CSF pre-treating macrophages enhanced the anti-proliferative efficacy of DOX. This improvement could be related to GM-CSF inducing macrophages to release TNF-α and other cytokines that prevent the growth of cancer cells. This work provides a facile method to prepare a protein/drug/hyperthermia co-delivery system, promising in cancer combined therapy through reversing the immunosuppressive tumor microenvironment.</p></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":"9 ","pages":"Article 100081"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A GM-CSF and DOX co-delivery nanoplatform modulates macrophage polarization to promote tumor suppression\",\"authors\":\"Miao Wang , Jiayu Zhang , Jiaruo Tang , Xiaomeng Cai , Rui Dou , Chen Guo , Yi Hu , Jun Chen\",\"doi\":\"10.1016/j.jciso.2023.100081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The immunosuppressive tumor microenvironment often compromises chemotherapeutic efficacy. Tumor-associated macrophages (TAM) are a critical component of the tumor immune microenvironment, a large portion of which is in M2-polarization with immunosuppressive effects. Priming the TAM to M1 polarization is a promising strategy for reversing the immunosuppressive microenvironment for promoting tumor therapy. In this study, a co-delivery nanoplatform that integrates GM-CSF as an immune adjuvant with chemotherapy of DOX has been developed to enhance the efficacy of cancer therapy. The photothermal effect from embedded single-walled carbon nanotubes (SWCNTs) controlled the release of GM-CSF and DOX. The results of MB49 cells verified that the GM-CSF pre-treating macrophages enhanced the anti-proliferative efficacy of DOX. This improvement could be related to GM-CSF inducing macrophages to release TNF-α and other cytokines that prevent the growth of cancer cells. This work provides a facile method to prepare a protein/drug/hyperthermia co-delivery system, promising in cancer combined therapy through reversing the immunosuppressive tumor microenvironment.</p></div>\",\"PeriodicalId\":73541,\"journal\":{\"name\":\"JCIS open\",\"volume\":\"9 \",\"pages\":\"Article 100081\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCIS open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666934X23000089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCIS open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666934X23000089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
A GM-CSF and DOX co-delivery nanoplatform modulates macrophage polarization to promote tumor suppression
The immunosuppressive tumor microenvironment often compromises chemotherapeutic efficacy. Tumor-associated macrophages (TAM) are a critical component of the tumor immune microenvironment, a large portion of which is in M2-polarization with immunosuppressive effects. Priming the TAM to M1 polarization is a promising strategy for reversing the immunosuppressive microenvironment for promoting tumor therapy. In this study, a co-delivery nanoplatform that integrates GM-CSF as an immune adjuvant with chemotherapy of DOX has been developed to enhance the efficacy of cancer therapy. The photothermal effect from embedded single-walled carbon nanotubes (SWCNTs) controlled the release of GM-CSF and DOX. The results of MB49 cells verified that the GM-CSF pre-treating macrophages enhanced the anti-proliferative efficacy of DOX. This improvement could be related to GM-CSF inducing macrophages to release TNF-α and other cytokines that prevent the growth of cancer cells. This work provides a facile method to prepare a protein/drug/hyperthermia co-delivery system, promising in cancer combined therapy through reversing the immunosuppressive tumor microenvironment.