{"title":"取代环辛基在生物正交环加成反应中促进反应活性的量子化学研究","authors":"T. Hosseinnejad, Marzieh Omrani-Pachin","doi":"10.1515/hc-2020-0129","DOIUrl":null,"url":null,"abstract":"Abstract In the present research, we focus on the energetics and electronic aspects of enhanced reactivity in the regioselective bioorthogonal 1,3-dipolar cycloaddition reaction of various substituted cyclooctynes with methyl azide, applying quantum chemistry approaches. In this respect, we assessed the structural and energetic properties of regioisomeric products and their corresponded transition states and calculated the reaction electronic energy changes and energy barriers through the cycloaddition pathways. The obtained results revealed that the trifluoromethyl substitution and fluorination of cyclooctynes lead to improved reactivity, in conjunction with increased exothermicity and decreased activation energy values. On the other hand, quantum theory of atoms in molecules computations were performed on some key bond and ring critical points that demonstrated the stabilizing topological properties of electron density and its derivatives upon trifluoromethyl substitution and fluorination of propargylic carbon of cyclooctynes which can be regarded as the essential origin of enhanced reactivity.","PeriodicalId":12914,"journal":{"name":"Heterocyclic Communications","volume":"27 1","pages":"142 - 154"},"PeriodicalIF":1.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum chemistry study on the promoted reactivity of substituted cyclooctynes in bioorthogonal cycloaddition reactions\",\"authors\":\"T. Hosseinnejad, Marzieh Omrani-Pachin\",\"doi\":\"10.1515/hc-2020-0129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the present research, we focus on the energetics and electronic aspects of enhanced reactivity in the regioselective bioorthogonal 1,3-dipolar cycloaddition reaction of various substituted cyclooctynes with methyl azide, applying quantum chemistry approaches. In this respect, we assessed the structural and energetic properties of regioisomeric products and their corresponded transition states and calculated the reaction electronic energy changes and energy barriers through the cycloaddition pathways. The obtained results revealed that the trifluoromethyl substitution and fluorination of cyclooctynes lead to improved reactivity, in conjunction with increased exothermicity and decreased activation energy values. On the other hand, quantum theory of atoms in molecules computations were performed on some key bond and ring critical points that demonstrated the stabilizing topological properties of electron density and its derivatives upon trifluoromethyl substitution and fluorination of propargylic carbon of cyclooctynes which can be regarded as the essential origin of enhanced reactivity.\",\"PeriodicalId\":12914,\"journal\":{\"name\":\"Heterocyclic Communications\",\"volume\":\"27 1\",\"pages\":\"142 - 154\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heterocyclic Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/hc-2020-0129\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heterocyclic Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/hc-2020-0129","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Quantum chemistry study on the promoted reactivity of substituted cyclooctynes in bioorthogonal cycloaddition reactions
Abstract In the present research, we focus on the energetics and electronic aspects of enhanced reactivity in the regioselective bioorthogonal 1,3-dipolar cycloaddition reaction of various substituted cyclooctynes with methyl azide, applying quantum chemistry approaches. In this respect, we assessed the structural and energetic properties of regioisomeric products and their corresponded transition states and calculated the reaction electronic energy changes and energy barriers through the cycloaddition pathways. The obtained results revealed that the trifluoromethyl substitution and fluorination of cyclooctynes lead to improved reactivity, in conjunction with increased exothermicity and decreased activation energy values. On the other hand, quantum theory of atoms in molecules computations were performed on some key bond and ring critical points that demonstrated the stabilizing topological properties of electron density and its derivatives upon trifluoromethyl substitution and fluorination of propargylic carbon of cyclooctynes which can be regarded as the essential origin of enhanced reactivity.
期刊介绍:
Heterocyclic Communications (HC) is a bimonthly, peer-reviewed journal publishing preliminary communications, research articles, and reviews on significant developments in all phases of heterocyclic chemistry, including general synthesis, natural products, computational analysis, considerable biological activity and inorganic ring systems. Clear presentation of experimental and computational data is strongly emphasized. Heterocyclic chemistry is a rapidly growing field. By some estimates original research papers in heterocyclic chemistry have increased to more than 60% of the current organic chemistry literature published. This explosive growth is even greater when considering heterocyclic research published in materials science, physical, biophysical, analytical, bioorganic, pharmaceutical, medicinal and natural products journals. There is a need, therefore, for a journal dedicated explicitly to heterocyclic chemistry and the properties of heterocyclic compounds.