关于一些p-微分分级链同源性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
You Qi, Joshua Sussan
{"title":"关于一些p-微分分级链同源性","authors":"You Qi, Joshua Sussan","doi":"10.1017/fmp.2022.19","DOIUrl":null,"url":null,"abstract":"Abstract We show that the triply graded Khovanov–Rozansky homology of knots and links over a field of positive odd characteristic p descends to an invariant in the homotopy category finite-dimensional p-complexes. A p-extended differential on the triply graded homology discovered by Cautis is compatible with the p-DG structure. As a consequence, we get a categorification of the Jones polynomial evaluated at a $2p$th root of unity.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"On some p-differential graded link homologies\",\"authors\":\"You Qi, Joshua Sussan\",\"doi\":\"10.1017/fmp.2022.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We show that the triply graded Khovanov–Rozansky homology of knots and links over a field of positive odd characteristic p descends to an invariant in the homotopy category finite-dimensional p-complexes. A p-extended differential on the triply graded homology discovered by Cautis is compatible with the p-DG structure. As a consequence, we get a categorification of the Jones polynomial evaluated at a $2p$th root of unity.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2020-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fmp.2022.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2022.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 10

摘要

摘要我们证明了在具有正奇特征p的域上节点和链接的三阶Khovanov–Rozansky同调在同伦范畴有限维p复形中降为不变量。Cautis发现的三重分级同源性上的p-扩展微分与p-DG结构相容。因此,我们得到了Jones多项式的一个分类,其评估值为第$2p$个单位根。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On some p-differential graded link homologies
Abstract We show that the triply graded Khovanov–Rozansky homology of knots and links over a field of positive odd characteristic p descends to an invariant in the homotopy category finite-dimensional p-complexes. A p-extended differential on the triply graded homology discovered by Cautis is compatible with the p-DG structure. As a consequence, we get a categorification of the Jones polynomial evaluated at a $2p$th root of unity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信