关于一些p-微分分级链同源性

IF 2.8 1区 数学 Q1 MATHEMATICS
You Qi, Joshua Sussan
{"title":"关于一些p-微分分级链同源性","authors":"You Qi, Joshua Sussan","doi":"10.1017/fmp.2022.19","DOIUrl":null,"url":null,"abstract":"Abstract We show that the triply graded Khovanov–Rozansky homology of knots and links over a field of positive odd characteristic p descends to an invariant in the homotopy category finite-dimensional p-complexes. A p-extended differential on the triply graded homology discovered by Cautis is compatible with the p-DG structure. As a consequence, we get a categorification of the Jones polynomial evaluated at a $2p$th root of unity.","PeriodicalId":56024,"journal":{"name":"Forum of Mathematics Pi","volume":"10 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"On some p-differential graded link homologies\",\"authors\":\"You Qi, Joshua Sussan\",\"doi\":\"10.1017/fmp.2022.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We show that the triply graded Khovanov–Rozansky homology of knots and links over a field of positive odd characteristic p descends to an invariant in the homotopy category finite-dimensional p-complexes. A p-extended differential on the triply graded homology discovered by Cautis is compatible with the p-DG structure. As a consequence, we get a categorification of the Jones polynomial evaluated at a $2p$th root of unity.\",\"PeriodicalId\":56024,\"journal\":{\"name\":\"Forum of Mathematics Pi\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2020-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Pi\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fmp.2022.19\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Pi","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2022.19","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 10

摘要

摘要我们证明了在具有正奇特征p的域上节点和链接的三阶Khovanov–Rozansky同调在同伦范畴有限维p复形中降为不变量。Cautis发现的三重分级同源性上的p-扩展微分与p-DG结构相容。因此,我们得到了Jones多项式的一个分类,其评估值为第$2p$个单位根。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On some p-differential graded link homologies
Abstract We show that the triply graded Khovanov–Rozansky homology of knots and links over a field of positive odd characteristic p descends to an invariant in the homotopy category finite-dimensional p-complexes. A p-extended differential on the triply graded homology discovered by Cautis is compatible with the p-DG structure. As a consequence, we get a categorification of the Jones polynomial evaluated at a $2p$th root of unity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum of Mathematics Pi
Forum of Mathematics Pi Mathematics-Statistics and Probability
CiteScore
3.50
自引率
0.00%
发文量
21
审稿时长
19 weeks
期刊介绍: Forum of Mathematics, Pi is the open access alternative to the leading generalist mathematics journals and are of real interest to a broad cross-section of all mathematicians. Papers published are of the highest quality. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas are welcomed. All published papers are free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信