叶形的可积变形:对Ilyashenko结果的推广

D. Cerveau, B. Sc'ardua
{"title":"叶形的可积变形:对Ilyashenko结果的推广","authors":"D. Cerveau, B. Sc'ardua","doi":"10.17323/1609-4514-2021-21-2-271-286","DOIUrl":null,"url":null,"abstract":"We study analytic deformations of holomorphic differential 1-forms. The initial 1-form is exact homogeneous and the deformation is by polynomial integrable 1-forms. We investigate under which conditions the elements of the deformation are still exact or, more generally, exhibit a first integral. Our results are related to natural extensions of classical results of Ilyashenko on limit cycles of perturbations of hamiltonian systems in two complex variables.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Integrable Deformations of Foliations: a Generalization of Ilyashenko's Result\",\"authors\":\"D. Cerveau, B. Sc'ardua\",\"doi\":\"10.17323/1609-4514-2021-21-2-271-286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study analytic deformations of holomorphic differential 1-forms. The initial 1-form is exact homogeneous and the deformation is by polynomial integrable 1-forms. We investigate under which conditions the elements of the deformation are still exact or, more generally, exhibit a first integral. Our results are related to natural extensions of classical results of Ilyashenko on limit cycles of perturbations of hamiltonian systems in two complex variables.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.17323/1609-4514-2021-21-2-271-286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.17323/1609-4514-2021-21-2-271-286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究全纯微分1型的解析变形。初始1-形式是精确齐次的,变形是多项式可积的1-形式。我们研究在哪些条件下变形的元素仍然是精确的,或者更一般地说,表现出一个第一积分。我们的结果与Ilyashenko关于两个复变量哈密顿系统摄动极限环的经典结果的自然推广有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Integrable Deformations of Foliations: a Generalization of Ilyashenko's Result
We study analytic deformations of holomorphic differential 1-forms. The initial 1-form is exact homogeneous and the deformation is by polynomial integrable 1-forms. We investigate under which conditions the elements of the deformation are still exact or, more generally, exhibit a first integral. Our results are related to natural extensions of classical results of Ilyashenko on limit cycles of perturbations of hamiltonian systems in two complex variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信