全局代数k理论

Pub Date : 2022-07-02 DOI:10.1112/topo.12241
Stefan Schwede
{"title":"全局代数k理论","authors":"Stefan Schwede","doi":"10.1112/topo.12241","DOIUrl":null,"url":null,"abstract":"<p>We introduce a global equivariant refinement of algebraic K-theory; here ‘global equivariant’ refers to simultaneous and compatible actions of all finite groups. Our construction turns a specific kind of categorical input data into a global <math>\n <semantics>\n <mi>Ω</mi>\n <annotation>$\\Omega$</annotation>\n </semantics></math>-spectrum that keeps track of genuine <math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>-equivariant infinite loop spaces, for all finite groups <math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>. The resulting global algebraic K-theory spectrum is a rigid way of packaging the representation K-theory, or ‘Swan K-theory’ into one highly structured object.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12241","citationCount":"8","resultStr":"{\"title\":\"Global algebraic K-theory\",\"authors\":\"Stefan Schwede\",\"doi\":\"10.1112/topo.12241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce a global equivariant refinement of algebraic K-theory; here ‘global equivariant’ refers to simultaneous and compatible actions of all finite groups. Our construction turns a specific kind of categorical input data into a global <math>\\n <semantics>\\n <mi>Ω</mi>\\n <annotation>$\\\\Omega$</annotation>\\n </semantics></math>-spectrum that keeps track of genuine <math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math>-equivariant infinite loop spaces, for all finite groups <math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math>. The resulting global algebraic K-theory spectrum is a rigid way of packaging the representation K-theory, or ‘Swan K-theory’ into one highly structured object.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12241\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

引入代数k理论的一个全局等变改进;这里的“全局等变”是指所有有限群的同时相容作用。我们的构造将一种特定类型的分类输入数据转化为一个全局的Ω $\Omega$ -谱,它跟踪所有有限群G$ G$ -等变无限循环空间。由此产生的全局代数k理论谱是将表示k理论或“天鹅k理论”包装成一个高度结构化对象的严格方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Global algebraic K-theory

We introduce a global equivariant refinement of algebraic K-theory; here ‘global equivariant’ refers to simultaneous and compatible actions of all finite groups. Our construction turns a specific kind of categorical input data into a global Ω $\Omega$ -spectrum that keeps track of genuine G $G$ -equivariant infinite loop spaces, for all finite groups G $G$ . The resulting global algebraic K-theory spectrum is a rigid way of packaging the representation K-theory, or ‘Swan K-theory’ into one highly structured object.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信