{"title":"全局代数k理论","authors":"Stefan Schwede","doi":"10.1112/topo.12241","DOIUrl":null,"url":null,"abstract":"<p>We introduce a global equivariant refinement of algebraic K-theory; here ‘global equivariant’ refers to simultaneous and compatible actions of all finite groups. Our construction turns a specific kind of categorical input data into a global <math>\n <semantics>\n <mi>Ω</mi>\n <annotation>$\\Omega$</annotation>\n </semantics></math>-spectrum that keeps track of genuine <math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>-equivariant infinite loop spaces, for all finite groups <math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>. The resulting global algebraic K-theory spectrum is a rigid way of packaging the representation K-theory, or ‘Swan K-theory’ into one highly structured object.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12241","citationCount":"8","resultStr":"{\"title\":\"Global algebraic K-theory\",\"authors\":\"Stefan Schwede\",\"doi\":\"10.1112/topo.12241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce a global equivariant refinement of algebraic K-theory; here ‘global equivariant’ refers to simultaneous and compatible actions of all finite groups. Our construction turns a specific kind of categorical input data into a global <math>\\n <semantics>\\n <mi>Ω</mi>\\n <annotation>$\\\\Omega$</annotation>\\n </semantics></math>-spectrum that keeps track of genuine <math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math>-equivariant infinite loop spaces, for all finite groups <math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math>. The resulting global algebraic K-theory spectrum is a rigid way of packaging the representation K-theory, or ‘Swan K-theory’ into one highly structured object.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12241\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We introduce a global equivariant refinement of algebraic K-theory; here ‘global equivariant’ refers to simultaneous and compatible actions of all finite groups. Our construction turns a specific kind of categorical input data into a global -spectrum that keeps track of genuine -equivariant infinite loop spaces, for all finite groups . The resulting global algebraic K-theory spectrum is a rigid way of packaging the representation K-theory, or ‘Swan K-theory’ into one highly structured object.