光子分子量子光学

IF 25.2 1区 物理与天体物理 Q1 OPTICS
Kun Liao, Xiaoyong Hu, Tianyi Gan, Qihang Liu, Zhen-xing Wu, Chongxiao Fan, Xilin Feng, Cuicui Lu, Yong‐Chun Liu, Q. Gong
{"title":"光子分子量子光学","authors":"Kun Liao, Xiaoyong Hu, Tianyi Gan, Qihang Liu, Zhen-xing Wu, Chongxiao Fan, Xilin Feng, Cuicui Lu, Yong‐Chun Liu, Q. Gong","doi":"10.1364/aop.376739","DOIUrl":null,"url":null,"abstract":"Photonic molecules (PMs) are artificial nanoscale photonic structures that play important roles in the fundamental optics field. PM quantum optics has recently become a promising research field, because it provides novel quantum optical phenomena including Rabi oscillation, the Stark effect, the Purcell effect, the photon blockade effect, bound states in the continuum, electromagnetically induced transparency, and Autler–Townes splitting. With the constant improvements in theoretical PM quantum optics research, many newly integrated photonic devices have been proposed and experimentally demonstrated, showing major potential for fabrication of next-generation, high-performance integrated photonic chips. This review provides a universal overview of the rapidly developing PM quantum optics field, including fundamental mechanisms, realization frameworks, novel quantum optical phenomena, and applications in newly developed photonic devices while also giving a general summary of the remaining challenges and proposing possible development directions for PM quantum optics.","PeriodicalId":48960,"journal":{"name":"Advances in Optics and Photonics","volume":"12 1","pages":"60-134"},"PeriodicalIF":25.2000,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Photonic molecule quantum optics\",\"authors\":\"Kun Liao, Xiaoyong Hu, Tianyi Gan, Qihang Liu, Zhen-xing Wu, Chongxiao Fan, Xilin Feng, Cuicui Lu, Yong‐Chun Liu, Q. Gong\",\"doi\":\"10.1364/aop.376739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photonic molecules (PMs) are artificial nanoscale photonic structures that play important roles in the fundamental optics field. PM quantum optics has recently become a promising research field, because it provides novel quantum optical phenomena including Rabi oscillation, the Stark effect, the Purcell effect, the photon blockade effect, bound states in the continuum, electromagnetically induced transparency, and Autler–Townes splitting. With the constant improvements in theoretical PM quantum optics research, many newly integrated photonic devices have been proposed and experimentally demonstrated, showing major potential for fabrication of next-generation, high-performance integrated photonic chips. This review provides a universal overview of the rapidly developing PM quantum optics field, including fundamental mechanisms, realization frameworks, novel quantum optical phenomena, and applications in newly developed photonic devices while also giving a general summary of the remaining challenges and proposing possible development directions for PM quantum optics.\",\"PeriodicalId\":48960,\"journal\":{\"name\":\"Advances in Optics and Photonics\",\"volume\":\"12 1\",\"pages\":\"60-134\"},\"PeriodicalIF\":25.2000,\"publicationDate\":\"2020-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Optics and Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/aop.376739\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Optics and Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/aop.376739","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 21

摘要

光子分子是一种人造纳米级光子结构,在基础光学领域具有重要作用。PM量子光学最近成为一个有前途的研究领域,因为它提供了新的量子光学现象,包括拉比振荡、斯塔克效应、珀塞尔效应、光子封锁效应、连续统中的束缚态、电磁感应透明和奥特勒-汤斯分裂。随着PM量子光学理论研究的不断进步,许多新的集成光子器件已经被提出和实验证明,显示出制造下一代高性能集成光子芯片的巨大潜力。本文综述了快速发展的PM量子光学领域,包括基本机制、实现框架、新型量子光学现象以及在新开发的光子器件中的应用,并对PM量子光学存在的挑战进行了总结,提出了可能的发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Photonic molecule quantum optics

Photonic molecule quantum optics
Photonic molecules (PMs) are artificial nanoscale photonic structures that play important roles in the fundamental optics field. PM quantum optics has recently become a promising research field, because it provides novel quantum optical phenomena including Rabi oscillation, the Stark effect, the Purcell effect, the photon blockade effect, bound states in the continuum, electromagnetically induced transparency, and Autler–Townes splitting. With the constant improvements in theoretical PM quantum optics research, many newly integrated photonic devices have been proposed and experimentally demonstrated, showing major potential for fabrication of next-generation, high-performance integrated photonic chips. This review provides a universal overview of the rapidly developing PM quantum optics field, including fundamental mechanisms, realization frameworks, novel quantum optical phenomena, and applications in newly developed photonic devices while also giving a general summary of the remaining challenges and proposing possible development directions for PM quantum optics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
56.60
自引率
0.00%
发文量
13
期刊介绍: Advances in Optics and Photonics (AOP) is an all-electronic journal that publishes comprehensive review articles and multimedia tutorials. It is suitable for students, researchers, faculty, business professionals, and engineers interested in optics and photonics. The content of the journal covers advancements in these fields, ranging from fundamental science to engineering applications. The journal aims to capture the most significant developments in optics and photonics. It achieves this through long review articles and comprehensive tutorials written by prominent and respected authors who are at the forefront of their fields. The journal goes beyond traditional text-based articles by enhancing the content with multimedia elements, such as animation and video. This multimedia approach helps to enhance the understanding and visualization of complex concepts. AOP offers dedicated article preparation and peer-review support to assist authors throughout the publication process. This support ensures that the articles meet the journal's standards and are well-received by readers. Additionally, AOP welcomes comments on published review articles, encouraging further discussions and insights from the scientific community. In summary, Advances in Optics and Photonics is a comprehensive journal that provides authoritative and accessible content on advancements in optics and photonics. With its diverse range of articles, multimedia enhancements, and dedicated support, AOP serves as a valuable resource for professionals and researchers in these fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信