旋转剪切流中的代数稳定模式

IF 1.3 4区 工程技术 Q3 MECHANICS
T. Gebler, D. Plümacher, J. Kahle, M. Oberlack
{"title":"旋转剪切流中的代数稳定模式","authors":"T. Gebler, D. Plümacher, J. Kahle, M. Oberlack","doi":"10.1088/1873-7005/ac44f9","DOIUrl":null,"url":null,"abstract":"We investigate the two-dimensional (2D) stability of rotational shear flows in an unbounded domain. The eigenvalue problem is formulated by using a novel algebraic mode decomposition distinct from the normal modes with temporal evolution exp(ωt) . Based on the work of Nold and Oberlack (2013 Phys. Fluids 25 104101), we show how these new modes can be constructed from the symmetries of the linearized stability equation. For the azimuthal base flow velocity V(r)=r−1 an additional symmetry exists, such that a mode with algebraic temporal evolution t s is found. s refers to an eigenvalue for the algebraic growth or decay of the kinetic energy of the perturbations. An eigenvalue problem for the viscous and inviscid stability using algebraic modes is formulated on an infinite domain with r→∞ . An asymptotic analysis of the eigenfunctions shows that the flow is linearly stable under 2D perturbations. We find stable modes with the algebraic mode ansatz, which can not be obtained by a normal mode analysis. The stability results are in line with Rayleigh’s inflection point theorem.","PeriodicalId":56311,"journal":{"name":"Fluid Dynamics Research","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algebraic stability modes in rotational shear flow\",\"authors\":\"T. Gebler, D. Plümacher, J. Kahle, M. Oberlack\",\"doi\":\"10.1088/1873-7005/ac44f9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the two-dimensional (2D) stability of rotational shear flows in an unbounded domain. The eigenvalue problem is formulated by using a novel algebraic mode decomposition distinct from the normal modes with temporal evolution exp(ωt) . Based on the work of Nold and Oberlack (2013 Phys. Fluids 25 104101), we show how these new modes can be constructed from the symmetries of the linearized stability equation. For the azimuthal base flow velocity V(r)=r−1 an additional symmetry exists, such that a mode with algebraic temporal evolution t s is found. s refers to an eigenvalue for the algebraic growth or decay of the kinetic energy of the perturbations. An eigenvalue problem for the viscous and inviscid stability using algebraic modes is formulated on an infinite domain with r→∞ . An asymptotic analysis of the eigenfunctions shows that the flow is linearly stable under 2D perturbations. We find stable modes with the algebraic mode ansatz, which can not be obtained by a normal mode analysis. The stability results are in line with Rayleigh’s inflection point theorem.\",\"PeriodicalId\":56311,\"journal\":{\"name\":\"Fluid Dynamics Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Dynamics Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1873-7005/ac44f9\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1873-7005/ac44f9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了无界域中旋转剪切流的二维(2D)稳定性。特征值问题是通过使用一种不同于具有时间演化exp(ωt)的正常模式的新的代数模式分解来公式化的。基于Nold和Oberlack(2013 Phys.Fluids 25 104101)的工作,我们展示了如何从线性化稳定性方程的对称性构建这些新模式。对于方位角基本流速V(r)=r−1,存在额外的对称性,因此发现了具有代数时间演化的模式ts。s是指扰动动能代数增长或衰减的特征值。在r为1的无限域上,用代数模建立了粘性和无粘性稳定性的特征值问题→∞ . 本征函数的渐近分析表明,在二维扰动下,流动是线性稳定的。我们用代数模变换找到了稳定模,这是正规模分析所不能得到的。稳定性结果符合瑞利拐点定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algebraic stability modes in rotational shear flow
We investigate the two-dimensional (2D) stability of rotational shear flows in an unbounded domain. The eigenvalue problem is formulated by using a novel algebraic mode decomposition distinct from the normal modes with temporal evolution exp(ωt) . Based on the work of Nold and Oberlack (2013 Phys. Fluids 25 104101), we show how these new modes can be constructed from the symmetries of the linearized stability equation. For the azimuthal base flow velocity V(r)=r−1 an additional symmetry exists, such that a mode with algebraic temporal evolution t s is found. s refers to an eigenvalue for the algebraic growth or decay of the kinetic energy of the perturbations. An eigenvalue problem for the viscous and inviscid stability using algebraic modes is formulated on an infinite domain with r→∞ . An asymptotic analysis of the eigenfunctions shows that the flow is linearly stable under 2D perturbations. We find stable modes with the algebraic mode ansatz, which can not be obtained by a normal mode analysis. The stability results are in line with Rayleigh’s inflection point theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fluid Dynamics Research
Fluid Dynamics Research 物理-力学
CiteScore
2.90
自引率
6.70%
发文量
37
审稿时长
5 months
期刊介绍: Fluid Dynamics Research publishes original and creative works in all fields of fluid dynamics. The scope includes theoretical, numerical and experimental studies that contribute to the fundamental understanding and/or application of fluid phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信