Polaris:R1CS的透明简洁零知识自变量与高效验证器

Shihui Fu, G. Gong
{"title":"Polaris:R1CS的透明简洁零知识自变量与高效验证器","authors":"Shihui Fu, G. Gong","doi":"10.2478/popets-2022-0027","DOIUrl":null,"url":null,"abstract":"Abstract We present a new zero-knowledge succinct argument of knowledge (zkSNARK) scheme for Rank-1 Constraint Satisfaction (RICS), a widely deployed NP-complete language that generalizes arithmetic circuit satisfiability. By instantiating with different commitment schemes, we obtain several zkSNARKs where the verifier’s costs and the proof size range from O(log2 N) to O(N) O\\left( {\\sqrt N } \\right) depending on the underlying polynomial commitment schemes when applied to an N-gate arithmetic circuit. All these schemes do not require a trusted setup. It is plausibly post-quantum secure when instantiated with a secure collision-resistant hash function. We report on experiments for evaluating the performance of our proposed system. For instance, for verifying a SHA-256 preimage (less than 23k AND gates) in zero-knowledge with 128 bits security, the proof size is less than 150kB and the verification time is less than 11ms, both competitive to existing systems.","PeriodicalId":74556,"journal":{"name":"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium","volume":"2022 1","pages":"544 - 564"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Polaris: Transparent Succinct Zero-Knowledge Arguments for R1CS with Efficient Verifier\",\"authors\":\"Shihui Fu, G. Gong\",\"doi\":\"10.2478/popets-2022-0027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We present a new zero-knowledge succinct argument of knowledge (zkSNARK) scheme for Rank-1 Constraint Satisfaction (RICS), a widely deployed NP-complete language that generalizes arithmetic circuit satisfiability. By instantiating with different commitment schemes, we obtain several zkSNARKs where the verifier’s costs and the proof size range from O(log2 N) to O(N) O\\\\left( {\\\\sqrt N } \\\\right) depending on the underlying polynomial commitment schemes when applied to an N-gate arithmetic circuit. All these schemes do not require a trusted setup. It is plausibly post-quantum secure when instantiated with a secure collision-resistant hash function. We report on experiments for evaluating the performance of our proposed system. For instance, for verifying a SHA-256 preimage (less than 23k AND gates) in zero-knowledge with 128 bits security, the proof size is less than 150kB and the verification time is less than 11ms, both competitive to existing systems.\",\"PeriodicalId\":74556,\"journal\":{\"name\":\"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium\",\"volume\":\"2022 1\",\"pages\":\"544 - 564\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/popets-2022-0027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/popets-2022-0027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要我们为秩-1约束满足(RICS)提出了一种新的零知识简洁知识论证(zkSNARK)方案,这是一种广泛部署的NP完全语言,推广了算术电路的可满足性。通过用不同的承诺方案进行实例化,我们获得了几个zksNARK,其中验证器的成本和证明大小范围从O(log2N)到O(N)O\left({\sqrt N}\right),这取决于应用于N门运算电路时的底层多项式承诺方案。所有这些方案都不需要可信的设置。当使用安全的抗冲突哈希函数实例化时,它似乎是后量子安全的。我们报告了评估我们提出的系统性能的实验。例如,对于以128位安全性在零知识中验证SHA-256预图像(小于23k与门),证明大小小于150kB,验证时间小于11ms,两者都与现有系统具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polaris: Transparent Succinct Zero-Knowledge Arguments for R1CS with Efficient Verifier
Abstract We present a new zero-knowledge succinct argument of knowledge (zkSNARK) scheme for Rank-1 Constraint Satisfaction (RICS), a widely deployed NP-complete language that generalizes arithmetic circuit satisfiability. By instantiating with different commitment schemes, we obtain several zkSNARKs where the verifier’s costs and the proof size range from O(log2 N) to O(N) O\left( {\sqrt N } \right) depending on the underlying polynomial commitment schemes when applied to an N-gate arithmetic circuit. All these schemes do not require a trusted setup. It is plausibly post-quantum secure when instantiated with a secure collision-resistant hash function. We report on experiments for evaluating the performance of our proposed system. For instance, for verifying a SHA-256 preimage (less than 23k AND gates) in zero-knowledge with 128 bits security, the proof size is less than 150kB and the verification time is less than 11ms, both competitive to existing systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信