球体上纤维流形的简单体积和本质

Pub Date : 2023-02-06 DOI:10.1112/topo.12286
Thorben Kastenholz, Jens Reinhold
{"title":"球体上纤维流形的简单体积和本质","authors":"Thorben Kastenholz,&nbsp;Jens Reinhold","doi":"10.1112/topo.12286","DOIUrl":null,"url":null,"abstract":"<p>We study the question when a manifold that fibers over a sphere can be rationally essential, or have positive simplicial volume. More concretely, we show that mapping tori of manifolds (whose fundamental groups can be quite arbitrary) of dimension <math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n <mo>⩾</mo>\n <mn>7</mn>\n </mrow>\n <annotation>$2n +1 \\geqslant 7$</annotation>\n </semantics></math> with non-zero simplicial volume are very common. This contrasts the case of fiber bundles over a sphere of dimension <math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>⩾</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$d\\geqslant 2$</annotation>\n </semantics></math>: we prove that their total spaces are rationally inessential if <math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>⩾</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$d\\geqslant 3$</annotation>\n </semantics></math>, and always have simplicial volume 0. Using a result by Dranishnikov, we also deduce a surprising property of macroscopic dimension, and we give two applications to positive scalar curvature and characteristic classes, respectively.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12286","citationCount":"0","resultStr":"{\"title\":\"Simplicial volume and essentiality of manifolds fibered over spheres\",\"authors\":\"Thorben Kastenholz,&nbsp;Jens Reinhold\",\"doi\":\"10.1112/topo.12286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the question when a manifold that fibers over a sphere can be rationally essential, or have positive simplicial volume. More concretely, we show that mapping tori of manifolds (whose fundamental groups can be quite arbitrary) of dimension <math>\\n <semantics>\\n <mrow>\\n <mn>2</mn>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>⩾</mo>\\n <mn>7</mn>\\n </mrow>\\n <annotation>$2n +1 \\\\geqslant 7$</annotation>\\n </semantics></math> with non-zero simplicial volume are very common. This contrasts the case of fiber bundles over a sphere of dimension <math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>⩾</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$d\\\\geqslant 2$</annotation>\\n </semantics></math>: we prove that their total spaces are rationally inessential if <math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>⩾</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$d\\\\geqslant 3$</annotation>\\n </semantics></math>, and always have simplicial volume 0. Using a result by Dranishnikov, we also deduce a surprising property of macroscopic dimension, and we give two applications to positive scalar curvature and characteristic classes, respectively.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12286\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一个在球体上纤维的流形何时可以是合理的本质,或者具有正的单纯形体积的问题。更具体地说,我们证明了维数为2n+1⩾7$2n+1\geqslant 7$的流形(其基群可以是相当任意的)与非零单体的映射tori是非常常见的。这与维度为d⩾2$d\geqslant 2$的球面上的纤维束的情况形成了对比:我们证明了如果d \10878.; 3$d\getqslant 3$,它们的总空间是合理的不重要的,并且总是具有单纯体积0。利用Dranishnikov的结果,我们还推导了宏观维数的一个令人惊讶的性质,并分别给出了正标量曲率和特征类的两个应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Simplicial volume and essentiality of manifolds fibered over spheres

分享
查看原文
Simplicial volume and essentiality of manifolds fibered over spheres

We study the question when a manifold that fibers over a sphere can be rationally essential, or have positive simplicial volume. More concretely, we show that mapping tori of manifolds (whose fundamental groups can be quite arbitrary) of dimension 2 n + 1 7 $2n +1 \geqslant 7$ with non-zero simplicial volume are very common. This contrasts the case of fiber bundles over a sphere of dimension d 2 $d\geqslant 2$ : we prove that their total spaces are rationally inessential if d 3 $d\geqslant 3$ , and always have simplicial volume 0. Using a result by Dranishnikov, we also deduce a surprising property of macroscopic dimension, and we give two applications to positive scalar curvature and characteristic classes, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信