Lisanne A. van den Bogaart , Jildou Schotanus , Jacob J. Capelle , Tjeerd J. Bouma
{"title":"比较传统与可生物降解贻贝种子收集器(SMCs)对种子沉降、种子密度和种子生长的影响:部署深度和位置的影响","authors":"Lisanne A. van den Bogaart , Jildou Schotanus , Jacob J. Capelle , Tjeerd J. Bouma","doi":"10.1016/j.aquaeng.2023.102344","DOIUrl":null,"url":null,"abstract":"<div><p>Mussel bottom culture is historically based on transplanting wild mussel seed to designated culture plots. Seed mussel collectors (SMCs) that are deployed in the water column are gradually replacing benthic mussel beds for mussel seed resource provisioning. Traditional SMCs consist of weighted filamentous nylon ropes. The performance of SMCs are promising, but the major disadvantages are the increased cost, effort, and the use of non-sustainable materials. In this study, we developed an innovative SMC: the BioShell-SMC. It consists of a coconut core rope surrounded by empty cockle shells that are held in place by biodegradable socking. The advantage of this system compared to traditional SMCs is that it provides biodegradable and sustainable resource material suitable for on-bottom placement. We compared its relative performance to that of a traditional SMC at different deployment depths and locations used for SMC deployment in the Dutch Wadden Sea and Oosterschelde. The results from this experiment indicated that in six out of nine locations mussel seed biomass was comparable between the two collector types. On both collector types, mussel seed biomass was higher in the Wadden Sea than in the Oosterschelde. We also found that mussel seed biomass development was not affected by deployment depth, though mussels were more numerous and shorter in deep water. The results of the current study provide a promising start toward a more sustainable mussel seed collection for bottom cultivation.</p></div>","PeriodicalId":8120,"journal":{"name":"Aquacultural Engineering","volume":"102 ","pages":"Article 102344"},"PeriodicalIF":3.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comparing traditional vs. biodegradable seed mussel collectors (SMCs) for seed settlement, seed density, and seed growth: Effect of deployment depth and location\",\"authors\":\"Lisanne A. van den Bogaart , Jildou Schotanus , Jacob J. Capelle , Tjeerd J. Bouma\",\"doi\":\"10.1016/j.aquaeng.2023.102344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mussel bottom culture is historically based on transplanting wild mussel seed to designated culture plots. Seed mussel collectors (SMCs) that are deployed in the water column are gradually replacing benthic mussel beds for mussel seed resource provisioning. Traditional SMCs consist of weighted filamentous nylon ropes. The performance of SMCs are promising, but the major disadvantages are the increased cost, effort, and the use of non-sustainable materials. In this study, we developed an innovative SMC: the BioShell-SMC. It consists of a coconut core rope surrounded by empty cockle shells that are held in place by biodegradable socking. The advantage of this system compared to traditional SMCs is that it provides biodegradable and sustainable resource material suitable for on-bottom placement. We compared its relative performance to that of a traditional SMC at different deployment depths and locations used for SMC deployment in the Dutch Wadden Sea and Oosterschelde. The results from this experiment indicated that in six out of nine locations mussel seed biomass was comparable between the two collector types. On both collector types, mussel seed biomass was higher in the Wadden Sea than in the Oosterschelde. We also found that mussel seed biomass development was not affected by deployment depth, though mussels were more numerous and shorter in deep water. The results of the current study provide a promising start toward a more sustainable mussel seed collection for bottom cultivation.</p></div>\",\"PeriodicalId\":8120,\"journal\":{\"name\":\"Aquacultural Engineering\",\"volume\":\"102 \",\"pages\":\"Article 102344\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquacultural Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0144860923000316\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquacultural Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144860923000316","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Comparing traditional vs. biodegradable seed mussel collectors (SMCs) for seed settlement, seed density, and seed growth: Effect of deployment depth and location
Mussel bottom culture is historically based on transplanting wild mussel seed to designated culture plots. Seed mussel collectors (SMCs) that are deployed in the water column are gradually replacing benthic mussel beds for mussel seed resource provisioning. Traditional SMCs consist of weighted filamentous nylon ropes. The performance of SMCs are promising, but the major disadvantages are the increased cost, effort, and the use of non-sustainable materials. In this study, we developed an innovative SMC: the BioShell-SMC. It consists of a coconut core rope surrounded by empty cockle shells that are held in place by biodegradable socking. The advantage of this system compared to traditional SMCs is that it provides biodegradable and sustainable resource material suitable for on-bottom placement. We compared its relative performance to that of a traditional SMC at different deployment depths and locations used for SMC deployment in the Dutch Wadden Sea and Oosterschelde. The results from this experiment indicated that in six out of nine locations mussel seed biomass was comparable between the two collector types. On both collector types, mussel seed biomass was higher in the Wadden Sea than in the Oosterschelde. We also found that mussel seed biomass development was not affected by deployment depth, though mussels were more numerous and shorter in deep water. The results of the current study provide a promising start toward a more sustainable mussel seed collection for bottom cultivation.
期刊介绍:
Aquacultural Engineering is concerned with the design and development of effective aquacultural systems for marine and freshwater facilities. The journal aims to apply the knowledge gained from basic research which potentially can be translated into commercial operations.
Problems of scale-up and application of research data involve many parameters, both physical and biological, making it difficult to anticipate the interaction between the unit processes and the cultured animals. Aquacultural Engineering aims to develop this bioengineering interface for aquaculture and welcomes contributions in the following areas:
– Engineering and design of aquaculture facilities
– Engineering-based research studies
– Construction experience and techniques
– In-service experience, commissioning, operation
– Materials selection and their uses
– Quantification of biological data and constraints