基于能量耗散理论的节理岩体损伤各向异性及能量演化机制研究

IF 3.7 2区 工程技术 Q3 ENGINEERING, ENVIRONMENTAL
Bingqian Yan, Hongpu Kang, Jianping Zuo, Peitao Wang, Xiangshang Li, Meifeng Cai, Jianzhong Liu
{"title":"基于能量耗散理论的节理岩体损伤各向异性及能量演化机制研究","authors":"Bingqian Yan,&nbsp;Hongpu Kang,&nbsp;Jianping Zuo,&nbsp;Peitao Wang,&nbsp;Xiangshang Li,&nbsp;Meifeng Cai,&nbsp;Jianzhong Liu","doi":"10.1007/s10064-023-03278-1","DOIUrl":null,"url":null,"abstract":"<div><p>The rapid development of roads and scenic spots in the suburbs of Beijing has formed a large number of artificial slopes, creating conditions for geological disasters such as collapse. It is urgent to study the influence of joint development and rainfall on the energy evolution mechanism in the process of geological disasters and rock mass failure. The deformation and failure process of jointed rock mass was accompanied by the accumulation and release of energy. To explore the damage anisotropy characteristics and the energy evolution law of jointed rock mass, nuclear magnetic resonance (NMR), triaxial compression, and acoustic emission (AE) tests of rock specimens were carried out. The pore evolution law of jointed rock specimen was analyzed, and the variation law of mechanical parameters and acoustic emission of rock specimen was studied. By establishing the energy evolution constitutive model of jointed rock specimens, the variation laws of total energy, elastic strain energy, and dissipative energy during deformation and failure of jointed rock masses were analyzed, and the energy evolution mechanism during damage and failure of jointed rock masses was revealed. The failure mode characteristics of jointed rock specimens with different dip angles under different confining pressures were analyzed.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"82 8","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Study on damage anisotropy and energy evolution mechanism of jointed rock mass based on energy dissipation theory\",\"authors\":\"Bingqian Yan,&nbsp;Hongpu Kang,&nbsp;Jianping Zuo,&nbsp;Peitao Wang,&nbsp;Xiangshang Li,&nbsp;Meifeng Cai,&nbsp;Jianzhong Liu\",\"doi\":\"10.1007/s10064-023-03278-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The rapid development of roads and scenic spots in the suburbs of Beijing has formed a large number of artificial slopes, creating conditions for geological disasters such as collapse. It is urgent to study the influence of joint development and rainfall on the energy evolution mechanism in the process of geological disasters and rock mass failure. The deformation and failure process of jointed rock mass was accompanied by the accumulation and release of energy. To explore the damage anisotropy characteristics and the energy evolution law of jointed rock mass, nuclear magnetic resonance (NMR), triaxial compression, and acoustic emission (AE) tests of rock specimens were carried out. The pore evolution law of jointed rock specimen was analyzed, and the variation law of mechanical parameters and acoustic emission of rock specimen was studied. By establishing the energy evolution constitutive model of jointed rock specimens, the variation laws of total energy, elastic strain energy, and dissipative energy during deformation and failure of jointed rock masses were analyzed, and the energy evolution mechanism during damage and failure of jointed rock masses was revealed. The failure mode characteristics of jointed rock specimens with different dip angles under different confining pressures were analyzed.</p></div>\",\"PeriodicalId\":500,\"journal\":{\"name\":\"Bulletin of Engineering Geology and the Environment\",\"volume\":\"82 8\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Engineering Geology and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10064-023-03278-1\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-023-03278-1","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 1

摘要

北京郊区道路和景区的快速发展,形成了大量的人工斜坡,为崩塌等地质灾害创造了条件。研究地质灾害与岩体破坏过程中节理发育与降雨对能量演化机制的影响是迫切需要解决的问题。节理岩体的变形破坏过程伴随着能量的积累和释放。为探讨节理岩体的损伤各向异性特征和能量演化规律,对岩石试件进行了核磁共振、三轴压缩和声发射试验。分析了节理岩石试样的孔隙演化规律,研究了岩石试样力学参数和声发射的变化规律。通过建立节理岩体试件的能量演化本构模型,分析了节理岩体变形破坏过程中总能量、弹性应变能和耗散能的变化规律,揭示了节理岩体损伤破坏过程中的能量演化机制。分析了不同倾角节理岩样在不同围压作用下的破坏模式特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Study on damage anisotropy and energy evolution mechanism of jointed rock mass based on energy dissipation theory

Study on damage anisotropy and energy evolution mechanism of jointed rock mass based on energy dissipation theory

The rapid development of roads and scenic spots in the suburbs of Beijing has formed a large number of artificial slopes, creating conditions for geological disasters such as collapse. It is urgent to study the influence of joint development and rainfall on the energy evolution mechanism in the process of geological disasters and rock mass failure. The deformation and failure process of jointed rock mass was accompanied by the accumulation and release of energy. To explore the damage anisotropy characteristics and the energy evolution law of jointed rock mass, nuclear magnetic resonance (NMR), triaxial compression, and acoustic emission (AE) tests of rock specimens were carried out. The pore evolution law of jointed rock specimen was analyzed, and the variation law of mechanical parameters and acoustic emission of rock specimen was studied. By establishing the energy evolution constitutive model of jointed rock specimens, the variation laws of total energy, elastic strain energy, and dissipative energy during deformation and failure of jointed rock masses were analyzed, and the energy evolution mechanism during damage and failure of jointed rock masses was revealed. The failure mode characteristics of jointed rock specimens with different dip angles under different confining pressures were analyzed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of Engineering Geology and the Environment
Bulletin of Engineering Geology and the Environment 工程技术-地球科学综合
CiteScore
7.10
自引率
11.90%
发文量
445
审稿时长
4.1 months
期刊介绍: Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces: • the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations; • the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change; • the assessment of the mechanical and hydrological behaviour of soil and rock masses; • the prediction of changes to the above properties with time; • the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信