{"title":"由海洋中尺度Eddies衰变导出的侧向涡粘度","authors":"Qiuyang Li, Liang Sun, Chi Xu","doi":"10.4236/OJMS.2018.81008","DOIUrl":null,"url":null,"abstract":"The relationship of lateral eddy viscosity depending on length scale is estimated with the decay rate of mesoscale eddies identified from sea level anomaly of satellite observations. The eddy viscosity is expressed in terms of the mesoscale eddy parameters according to vortex dynamics. The census of mesoscale eddies shows, in general, that the eddy numbers obey the e-folding decay laws in terms of their amplitude, area and lifetime. The intrinsic values in the e-folding laws are used to estimate the lateral eddy viscosity. Dislike the previous theory that diffusivities are proportional to the length square, the eddy mixing rates (diffusivity and viscosity) from satellite mesoscale eddy datasets are proportional to rs to power of 1.8 (slightly less than 2), where rs is the radius of eddy with radius larger than the Batchelor scale. Additionally, the extrapolation of the eddy mixing to the molecule scale implies that the above power laws may hold until the value of rs is less than O (1 m). These mixing rates with the new parameterizations are suggested to use in numerical schemes. Finally, the climatological distributions of eddy viscosity are calculated.","PeriodicalId":65849,"journal":{"name":"海洋科学期刊(英文)","volume":"08 1","pages":"152-172"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"The Lateral Eddy Viscosity Derived from the Decay of Oceanic Mesoscale Eddies\",\"authors\":\"Qiuyang Li, Liang Sun, Chi Xu\",\"doi\":\"10.4236/OJMS.2018.81008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The relationship of lateral eddy viscosity depending on length scale is estimated with the decay rate of mesoscale eddies identified from sea level anomaly of satellite observations. The eddy viscosity is expressed in terms of the mesoscale eddy parameters according to vortex dynamics. The census of mesoscale eddies shows, in general, that the eddy numbers obey the e-folding decay laws in terms of their amplitude, area and lifetime. The intrinsic values in the e-folding laws are used to estimate the lateral eddy viscosity. Dislike the previous theory that diffusivities are proportional to the length square, the eddy mixing rates (diffusivity and viscosity) from satellite mesoscale eddy datasets are proportional to rs to power of 1.8 (slightly less than 2), where rs is the radius of eddy with radius larger than the Batchelor scale. Additionally, the extrapolation of the eddy mixing to the molecule scale implies that the above power laws may hold until the value of rs is less than O (1 m). These mixing rates with the new parameterizations are suggested to use in numerical schemes. Finally, the climatological distributions of eddy viscosity are calculated.\",\"PeriodicalId\":65849,\"journal\":{\"name\":\"海洋科学期刊(英文)\",\"volume\":\"08 1\",\"pages\":\"152-172\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"海洋科学期刊(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/OJMS.2018.81008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"海洋科学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/OJMS.2018.81008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Lateral Eddy Viscosity Derived from the Decay of Oceanic Mesoscale Eddies
The relationship of lateral eddy viscosity depending on length scale is estimated with the decay rate of mesoscale eddies identified from sea level anomaly of satellite observations. The eddy viscosity is expressed in terms of the mesoscale eddy parameters according to vortex dynamics. The census of mesoscale eddies shows, in general, that the eddy numbers obey the e-folding decay laws in terms of their amplitude, area and lifetime. The intrinsic values in the e-folding laws are used to estimate the lateral eddy viscosity. Dislike the previous theory that diffusivities are proportional to the length square, the eddy mixing rates (diffusivity and viscosity) from satellite mesoscale eddy datasets are proportional to rs to power of 1.8 (slightly less than 2), where rs is the radius of eddy with radius larger than the Batchelor scale. Additionally, the extrapolation of the eddy mixing to the molecule scale implies that the above power laws may hold until the value of rs is less than O (1 m). These mixing rates with the new parameterizations are suggested to use in numerical schemes. Finally, the climatological distributions of eddy viscosity are calculated.