超导数字电路设计自动化综述

IF 2.3 Q3 NANOSCIENCE & NANOTECHNOLOGY
G. Krylov, J. Kawa, E. Friedman
{"title":"超导数字电路设计自动化综述","authors":"G. Krylov, J. Kawa, E. Friedman","doi":"10.1109/mnano.2021.3113218","DOIUrl":null,"url":null,"abstract":"Electronic Design Automation (EDA) is essential for the design of large-scale microelectronic systems. In this article, EDA methodologies, techniques, and algorithms used to develop superconductive computing systems are reviewed. The semicustom standard cell-based design flow, common in conventional CMOS circuits, is widely adopted in modern superconductive digital circuits. Differences and issues in CAD flows as compared to CMOS design methodologies are highlighted. The most common stages of these design flows, from high-level simulation to physical layout, are described. These stages are grouped into three areas: simulation/modeling, synthesis/place and route, and verification. Modern approaches and tools for superconductive circuits are reviewed for each of these areas.","PeriodicalId":44724,"journal":{"name":"IEEE Nanotechnology Magazine","volume":"15 1","pages":"54-67"},"PeriodicalIF":2.3000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Design Automation of Superconductive Digital Circuits: A review\",\"authors\":\"G. Krylov, J. Kawa, E. Friedman\",\"doi\":\"10.1109/mnano.2021.3113218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electronic Design Automation (EDA) is essential for the design of large-scale microelectronic systems. In this article, EDA methodologies, techniques, and algorithms used to develop superconductive computing systems are reviewed. The semicustom standard cell-based design flow, common in conventional CMOS circuits, is widely adopted in modern superconductive digital circuits. Differences and issues in CAD flows as compared to CMOS design methodologies are highlighted. The most common stages of these design flows, from high-level simulation to physical layout, are described. These stages are grouped into three areas: simulation/modeling, synthesis/place and route, and verification. Modern approaches and tools for superconductive circuits are reviewed for each of these areas.\",\"PeriodicalId\":44724,\"journal\":{\"name\":\"IEEE Nanotechnology Magazine\",\"volume\":\"15 1\",\"pages\":\"54-67\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Nanotechnology Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/mnano.2021.3113218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Nanotechnology Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mnano.2021.3113218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 4

摘要

电子设计自动化(EDA)对于大型微电子系统的设计至关重要。本文回顾了用于开发超导计算系统的EDA方法、技术和算法。传统CMOS电路中常见的基于半定制标准单元的设计流程在现代超导数字电路中被广泛采用。与CMOS设计方法相比,强调了CAD流程中的差异和问题。描述了这些设计流程的最常见阶段,从高级模拟到物理布局。这些阶段分为三个领域:模拟/建模,合成/位置和路线,以及验证。本文对超导电路的现代研究方法和工具进行了综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design Automation of Superconductive Digital Circuits: A review
Electronic Design Automation (EDA) is essential for the design of large-scale microelectronic systems. In this article, EDA methodologies, techniques, and algorithms used to develop superconductive computing systems are reviewed. The semicustom standard cell-based design flow, common in conventional CMOS circuits, is widely adopted in modern superconductive digital circuits. Differences and issues in CAD flows as compared to CMOS design methodologies are highlighted. The most common stages of these design flows, from high-level simulation to physical layout, are described. These stages are grouped into three areas: simulation/modeling, synthesis/place and route, and verification. Modern approaches and tools for superconductive circuits are reviewed for each of these areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Nanotechnology Magazine
IEEE Nanotechnology Magazine NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
2.90
自引率
6.20%
发文量
46
期刊介绍: IEEE Nanotechnology Magazine publishes peer-reviewed articles that present emerging trends and practices in industrial electronics product research and development, key insights, and tutorial surveys in the field of interest to the member societies of the IEEE Nanotechnology Council. IEEE Nanotechnology Magazine will be limited to the scope of the Nanotechnology Council, which supports the theory, design, and development of nanotechnology and its scientific, engineering, and industrial applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信