非负高斯曲率曲面上实调和函数的Schwarz引理

Pub Date : 2023-05-01 DOI:10.1017/S0013091523000263
D. Kalaj, Miodrag Mateljevi'c, I. Pinelis
{"title":"非负高斯曲率曲面上实调和函数的Schwarz引理","authors":"D. Kalaj, Miodrag Mateljevi'c, I. Pinelis","doi":"10.1017/S0013091523000263","DOIUrl":null,"url":null,"abstract":"Abstract Assume that f is a real ρ-harmonic function of the unit disk $\\mathbb{D}$ onto the interval $(-1,1)$, where $\\rho(u,v)=R(u)$ is a metric defined in the infinite strip $(-1,1)\\times \\mathbb{R}$. Then we prove that $|\\nabla f(z)|(1-|z|^2)\\le \\frac{4}{\\pi}(1-f(z)^2)$ for all $z\\in\\mathbb{D}$, provided that ρ has a non-negative Gaussian curvature. This extends several results in the field and answers to a conjecture proposed by the first author in 2014. Such an inequality is not true for negatively curved metrics.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Schwarz lemma for real harmonic functions onto surfaces with non-negative Gaussian curvature\",\"authors\":\"D. Kalaj, Miodrag Mateljevi'c, I. Pinelis\",\"doi\":\"10.1017/S0013091523000263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Assume that f is a real ρ-harmonic function of the unit disk $\\\\mathbb{D}$ onto the interval $(-1,1)$, where $\\\\rho(u,v)=R(u)$ is a metric defined in the infinite strip $(-1,1)\\\\times \\\\mathbb{R}$. Then we prove that $|\\\\nabla f(z)|(1-|z|^2)\\\\le \\\\frac{4}{\\\\pi}(1-f(z)^2)$ for all $z\\\\in\\\\mathbb{D}$, provided that ρ has a non-negative Gaussian curvature. This extends several results in the field and answers to a conjecture proposed by the first author in 2014. Such an inequality is not true for negatively curved metrics.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0013091523000263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0013091523000263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要假设f是单位圆盘$\mathbb{D}$在区间$(-1,1)$上的实ρ-调和函数,其中$\rho(u,v)=R(u)$是在无限带$(-1、1)\times\mathbb{R}$中定义的度量。然后,我们证明了$|\nabla f(z)|(1-|z|^2)\le\frac{4}{\pi}(1-f(z)^2)$对于所有$z\in\mathbb{D}$,条件是ρ具有非负高斯曲率。这扩展了该领域的几个结果,并回答了第一作者在2014年提出的一个猜想。对于负曲线度量,这样的不等式是不成立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Schwarz lemma for real harmonic functions onto surfaces with non-negative Gaussian curvature
Abstract Assume that f is a real ρ-harmonic function of the unit disk $\mathbb{D}$ onto the interval $(-1,1)$, where $\rho(u,v)=R(u)$ is a metric defined in the infinite strip $(-1,1)\times \mathbb{R}$. Then we prove that $|\nabla f(z)|(1-|z|^2)\le \frac{4}{\pi}(1-f(z)^2)$ for all $z\in\mathbb{D}$, provided that ρ has a non-negative Gaussian curvature. This extends several results in the field and answers to a conjecture proposed by the first author in 2014. Such an inequality is not true for negatively curved metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信