部分双曲型系统子集的不稳定压力

IF 0.5 4区 数学 Q4 MATHEMATICS, APPLIED
Lei Liu, Jinlei Jiao, Xiaoyao Zhou
{"title":"部分双曲型系统子集的不稳定压力","authors":"Lei Liu, Jinlei Jiao, Xiaoyao Zhou","doi":"10.1080/14689367.2022.2086104","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce the Pesin–Pitskel unstable pressure to study dynamical complexity of general subsets in partially hyperbolic systems. We establish some basic results in dimension theory for Pesin–Pitskel unstable pressure, including a pressure distribution principle, and a variational principle for any compact (not necessarily invariant) subset between its Pesin–Pitskel unstable pressure and unstable metric pressure of probability measures supported on this set.","PeriodicalId":50564,"journal":{"name":"Dynamical Systems-An International Journal","volume":"37 1","pages":"564 - 577"},"PeriodicalIF":0.5000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Unstable pressure of subsets for partially hyperbolic systems\",\"authors\":\"Lei Liu, Jinlei Jiao, Xiaoyao Zhou\",\"doi\":\"10.1080/14689367.2022.2086104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce the Pesin–Pitskel unstable pressure to study dynamical complexity of general subsets in partially hyperbolic systems. We establish some basic results in dimension theory for Pesin–Pitskel unstable pressure, including a pressure distribution principle, and a variational principle for any compact (not necessarily invariant) subset between its Pesin–Pitskel unstable pressure and unstable metric pressure of probability measures supported on this set.\",\"PeriodicalId\":50564,\"journal\":{\"name\":\"Dynamical Systems-An International Journal\",\"volume\":\"37 1\",\"pages\":\"564 - 577\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamical Systems-An International Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/14689367.2022.2086104\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamical Systems-An International Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2022.2086104","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们引入Pesin–Pitskel不稳定压力来研究部分双曲系统中一般子集的动力学复杂性。我们在维数理论中建立了Pesin-Pitskel不稳定压力的一些基本结果,包括压力分布原理,以及在其Pesin-Pitskel不稳定压力和该集合上支持的概率测度的不稳定度量压力之间的任何紧(不一定不变)子集的变分原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unstable pressure of subsets for partially hyperbolic systems
In this paper, we introduce the Pesin–Pitskel unstable pressure to study dynamical complexity of general subsets in partially hyperbolic systems. We establish some basic results in dimension theory for Pesin–Pitskel unstable pressure, including a pressure distribution principle, and a variational principle for any compact (not necessarily invariant) subset between its Pesin–Pitskel unstable pressure and unstable metric pressure of probability measures supported on this set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: Dynamical Systems: An International Journal is a world-leading journal acting as a forum for communication across all branches of modern dynamical systems, and especially as a platform to facilitate interaction between theory and applications. This journal publishes high quality research articles in the theory and applications of dynamical systems, especially (but not exclusively) nonlinear systems. Advances in the following topics are addressed by the journal: •Differential equations •Bifurcation theory •Hamiltonian and Lagrangian dynamics •Hyperbolic dynamics •Ergodic theory •Topological and smooth dynamics •Random dynamical systems •Applications in technology, engineering and natural and life sciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信