{"title":"用于事件检测和地震属性计算的ObsPy库:为自动分析准备波形","authors":"R. Turner, R. Latto, A. Reading","doi":"10.5334/jors.365","DOIUrl":null,"url":null,"abstract":"We have implemented an extension for the observational seismology obspy software package to provide a streamlined tool tailored to the processing of seismic signals from non-earthquake sources, in particular those from deforming systems such as glaciers and landslides. This seismic attributes library provides functionality to: (1) download and/or pre-process seismic waveform data; (2) detect and catalogue seismic events using multi-component signals from one or more seismometers; and (3) calculate characteristics (‘attributes’/‘features’) of the identified events. The workflow is controlled by three main functions that have been tested for the breadth of data types expected from permanent and campaign-deployed seismic instrumentation. A selected STA/LTA-type (short-term average/long-term average), or other, event detection algorithm can be applied to the waveforms and user-defined functions implemented to calculate any required characteristics of the detected events. The code is written in Python 2/3 and is available on GitHub together with detailed documentation and worked examples.","PeriodicalId":37323,"journal":{"name":"Journal of Open Research Software","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An ObsPy Library for Event Detection and Seismic Attribute Calculation: Preparing Waveforms for Automated Analysis\",\"authors\":\"R. Turner, R. Latto, A. Reading\",\"doi\":\"10.5334/jors.365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have implemented an extension for the observational seismology obspy software package to provide a streamlined tool tailored to the processing of seismic signals from non-earthquake sources, in particular those from deforming systems such as glaciers and landslides. This seismic attributes library provides functionality to: (1) download and/or pre-process seismic waveform data; (2) detect and catalogue seismic events using multi-component signals from one or more seismometers; and (3) calculate characteristics (‘attributes’/‘features’) of the identified events. The workflow is controlled by three main functions that have been tested for the breadth of data types expected from permanent and campaign-deployed seismic instrumentation. A selected STA/LTA-type (short-term average/long-term average), or other, event detection algorithm can be applied to the waveforms and user-defined functions implemented to calculate any required characteristics of the detected events. The code is written in Python 2/3 and is available on GitHub together with detailed documentation and worked examples.\",\"PeriodicalId\":37323,\"journal\":{\"name\":\"Journal of Open Research Software\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Open Research Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5334/jors.365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Open Research Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5334/jors.365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
An ObsPy Library for Event Detection and Seismic Attribute Calculation: Preparing Waveforms for Automated Analysis
We have implemented an extension for the observational seismology obspy software package to provide a streamlined tool tailored to the processing of seismic signals from non-earthquake sources, in particular those from deforming systems such as glaciers and landslides. This seismic attributes library provides functionality to: (1) download and/or pre-process seismic waveform data; (2) detect and catalogue seismic events using multi-component signals from one or more seismometers; and (3) calculate characteristics (‘attributes’/‘features’) of the identified events. The workflow is controlled by three main functions that have been tested for the breadth of data types expected from permanent and campaign-deployed seismic instrumentation. A selected STA/LTA-type (short-term average/long-term average), or other, event detection algorithm can be applied to the waveforms and user-defined functions implemented to calculate any required characteristics of the detected events. The code is written in Python 2/3 and is available on GitHub together with detailed documentation and worked examples.