{"title":"有限域II上的曲线Yn = xl (Xm + 1","authors":"Saeed Tafazolian, F. Torres","doi":"10.1515/advgeom-2021-0017","DOIUrl":null,"url":null,"abstract":"Abstract Let F be the finite field of order q2. In this paper we continue the study in [24], [23], [22] of F-maximal curves defined by equations of type yn=xℓ(xm+1). ${{y}^{n}}={{x}^{\\ell }}\\left( {{x}^{m}}+1 \\right).$New results are obtained via certain subcovers of the nonsingular model of vN=ut2−u ${{v}^{N}}={{u}^{{{t}^{2}}}}-u$where q = tα, α ≥ 3 is odd and N = (tα + 1)/(t + 1). We observe that the case α = 3 is closely related to the Giulietti–Korchmáros curve.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":"21 1","pages":"385 - 390"},"PeriodicalIF":0.5000,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/advgeom-2021-0017","citationCount":"1","resultStr":"{\"title\":\"The curve Yn = Xℓ(Xm + 1) over finite fields II\",\"authors\":\"Saeed Tafazolian, F. Torres\",\"doi\":\"10.1515/advgeom-2021-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let F be the finite field of order q2. In this paper we continue the study in [24], [23], [22] of F-maximal curves defined by equations of type yn=xℓ(xm+1). ${{y}^{n}}={{x}^{\\\\ell }}\\\\left( {{x}^{m}}+1 \\\\right).$New results are obtained via certain subcovers of the nonsingular model of vN=ut2−u ${{v}^{N}}={{u}^{{{t}^{2}}}}-u$where q = tα, α ≥ 3 is odd and N = (tα + 1)/(t + 1). We observe that the case α = 3 is closely related to the Giulietti–Korchmáros curve.\",\"PeriodicalId\":7335,\"journal\":{\"name\":\"Advances in Geometry\",\"volume\":\"21 1\",\"pages\":\"385 - 390\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/advgeom-2021-0017\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/advgeom-2021-0017\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2021-0017","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Abstract Let F be the finite field of order q2. In this paper we continue the study in [24], [23], [22] of F-maximal curves defined by equations of type yn=xℓ(xm+1). ${{y}^{n}}={{x}^{\ell }}\left( {{x}^{m}}+1 \right).$New results are obtained via certain subcovers of the nonsingular model of vN=ut2−u ${{v}^{N}}={{u}^{{{t}^{2}}}}-u$where q = tα, α ≥ 3 is odd and N = (tα + 1)/(t + 1). We observe that the case α = 3 is closely related to the Giulietti–Korchmáros curve.
期刊介绍:
Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.