有限域II上的曲线Yn = xl (Xm + 1

IF 0.5 4区 数学 Q3 MATHEMATICS
Saeed Tafazolian, F. Torres
{"title":"有限域II上的曲线Yn = xl (Xm + 1","authors":"Saeed Tafazolian, F. Torres","doi":"10.1515/advgeom-2021-0017","DOIUrl":null,"url":null,"abstract":"Abstract Let F be the finite field of order q2. In this paper we continue the study in [24], [23], [22] of F-maximal curves defined by equations of type yn=xℓ(xm+1). ${{y}^{n}}={{x}^{\\ell }}\\left( {{x}^{m}}+1 \\right).$New results are obtained via certain subcovers of the nonsingular model of vN=ut2−u ${{v}^{N}}={{u}^{{{t}^{2}}}}-u$where q = tα, α ≥ 3 is odd and N = (tα + 1)/(t + 1). We observe that the case α = 3 is closely related to the Giulietti–Korchmáros curve.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/advgeom-2021-0017","citationCount":"1","resultStr":"{\"title\":\"The curve Yn = Xℓ(Xm + 1) over finite fields II\",\"authors\":\"Saeed Tafazolian, F. Torres\",\"doi\":\"10.1515/advgeom-2021-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let F be the finite field of order q2. In this paper we continue the study in [24], [23], [22] of F-maximal curves defined by equations of type yn=xℓ(xm+1). ${{y}^{n}}={{x}^{\\\\ell }}\\\\left( {{x}^{m}}+1 \\\\right).$New results are obtained via certain subcovers of the nonsingular model of vN=ut2−u ${{v}^{N}}={{u}^{{{t}^{2}}}}-u$where q = tα, α ≥ 3 is odd and N = (tα + 1)/(t + 1). We observe that the case α = 3 is closely related to the Giulietti–Korchmáros curve.\",\"PeriodicalId\":7335,\"journal\":{\"name\":\"Advances in Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/advgeom-2021-0017\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/advgeom-2021-0017\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2021-0017","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

设F是q2阶的有限域。在本文中,我们在[24],[23],[22]中继续研究由yn=x型方程定义的F-极大曲线ℓ(xm+1)${{y}^{n}}={x}^}\ell}}\left({x}^{m}}+1\right)$通过vN=ut2−u${{v}^{N}}={u}^{{t}^{2}}}-u$的非奇异模型的某些子覆盖得到了新的结果,其中q=tα,α≥3是奇数,N=(tα+1)/(t+1)。我们观察到,情况α=3与Giulietti–Korchmáros曲线密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The curve Yn = Xℓ(Xm + 1) over finite fields II
Abstract Let F be the finite field of order q2. In this paper we continue the study in [24], [23], [22] of F-maximal curves defined by equations of type yn=xℓ(xm+1). ${{y}^{n}}={{x}^{\ell }}\left( {{x}^{m}}+1 \right).$New results are obtained via certain subcovers of the nonsingular model of vN=ut2−u ${{v}^{N}}={{u}^{{{t}^{2}}}}-u$where q = tα, α ≥ 3 is odd and N = (tα + 1)/(t + 1). We observe that the case α = 3 is closely related to the Giulietti–Korchmáros curve.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Geometry
Advances in Geometry 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信