基于纳米材料的环境化学传感器的绿色合成方案、毒性和最新进展

IF 11.1 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Tawfik A. Saleh , Ganjar Fadillah
{"title":"基于纳米材料的环境化学传感器的绿色合成方案、毒性和最新进展","authors":"Tawfik A. Saleh ,&nbsp;Ganjar Fadillah","doi":"10.1016/j.teac.2023.e00204","DOIUrl":null,"url":null,"abstract":"<div><p>This study focuses on applying NPs<span><span> synthesized via the green method for chemical sensor applications. The development of green NPs materials as chemical sensors have been widely used and explored in various applications such as the environment, food, agriculture, and medicine. Several methods of green synthesis approach have been studied in producing NPs. The advantages, disadvantages, mechanism of the synthesis process and influencing factors have been thoroughly summarized to produce NPs material. This review also discusses the </span>toxicokinetic properties and stability of NPs, along with possible solutions to avoid their side effects. The physical and chemical unique properties of NPs, such as high surface area, good stability, thermal, and catalytic, depend on the synthesis route and the modifier attached to the NPs. Furthermore, the application and mechanism of the synthesized green NPs have been reported, especially in detecting organic compounds/biomolecules, toxic gases, and heavy metals</span></p></div>","PeriodicalId":56032,"journal":{"name":"Trends in Environmental Analytical Chemistry","volume":null,"pages":null},"PeriodicalIF":11.1000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Green synthesis protocols, toxicity, and recent progress in nanomaterial-based for environmental chemical sensors applications\",\"authors\":\"Tawfik A. Saleh ,&nbsp;Ganjar Fadillah\",\"doi\":\"10.1016/j.teac.2023.e00204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study focuses on applying NPs<span><span> synthesized via the green method for chemical sensor applications. The development of green NPs materials as chemical sensors have been widely used and explored in various applications such as the environment, food, agriculture, and medicine. Several methods of green synthesis approach have been studied in producing NPs. The advantages, disadvantages, mechanism of the synthesis process and influencing factors have been thoroughly summarized to produce NPs material. This review also discusses the </span>toxicokinetic properties and stability of NPs, along with possible solutions to avoid their side effects. The physical and chemical unique properties of NPs, such as high surface area, good stability, thermal, and catalytic, depend on the synthesis route and the modifier attached to the NPs. Furthermore, the application and mechanism of the synthesized green NPs have been reported, especially in detecting organic compounds/biomolecules, toxic gases, and heavy metals</span></p></div>\",\"PeriodicalId\":56032,\"journal\":{\"name\":\"Trends in Environmental Analytical Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Environmental Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214158823000107\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Environmental Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214158823000107","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 3

摘要

本研究的重点是将通过绿色方法合成的NPs应用于化学传感器。绿色纳米粒子材料作为化学传感器的开发已经在环境、食品、农业、医药等各个领域得到了广泛的应用和探索。研究了几种绿色合成的方法来生产NPs。对制备NPs材料的优缺点、合成工艺机理及影响因素进行了较为全面的综述。本文还讨论了NPs的毒性动力学性质和稳定性,以及避免其副作用的可能解决方案。NPs独特的物理和化学性质,如高表面积,良好的稳定性,热学和催化性能,取决于合成路线和附着在NPs上的改性剂。此外,还报道了合成的绿色纳米粒子在有机化合物/生物分子、有毒气体和重金属检测方面的应用和机理
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Green synthesis protocols, toxicity, and recent progress in nanomaterial-based for environmental chemical sensors applications

This study focuses on applying NPs synthesized via the green method for chemical sensor applications. The development of green NPs materials as chemical sensors have been widely used and explored in various applications such as the environment, food, agriculture, and medicine. Several methods of green synthesis approach have been studied in producing NPs. The advantages, disadvantages, mechanism of the synthesis process and influencing factors have been thoroughly summarized to produce NPs material. This review also discusses the toxicokinetic properties and stability of NPs, along with possible solutions to avoid their side effects. The physical and chemical unique properties of NPs, such as high surface area, good stability, thermal, and catalytic, depend on the synthesis route and the modifier attached to the NPs. Furthermore, the application and mechanism of the synthesized green NPs have been reported, especially in detecting organic compounds/biomolecules, toxic gases, and heavy metals

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in Environmental Analytical Chemistry
Trends in Environmental Analytical Chemistry Chemistry-Analytical Chemistry
CiteScore
21.20
自引率
2.70%
发文量
34
审稿时长
44 days
期刊介绍: Trends in Environmental Analytical Chemistry is an authoritative journal that focuses on the dynamic field of environmental analytical chemistry. It aims to deliver concise yet insightful overviews of the latest advancements in this field. By acquiring high-quality chemical data and effectively interpreting it, we can deepen our understanding of the environment. TrEAC is committed to keeping up with the fast-paced nature of environmental analytical chemistry by providing timely coverage of innovative analytical methods used in studying environmentally relevant substances and addressing related issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信