求助PDF
{"title":"三价图检测的微分同胚族和调和族","authors":"Boris Botvinnik, Tadayuki Watanabe","doi":"10.1112/topo.12283","DOIUrl":null,"url":null,"abstract":"<p>We study families of diffeomorphisms detected by trivalent graphs via the Kontsevich classes. We specify some recent results and constructions of the second named author to show that those non-trivial elements in homotopy groups <math>\n <semantics>\n <mrow>\n <msub>\n <mi>π</mi>\n <mo>∗</mo>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>B</mi>\n <msub>\n <mi>Diff</mi>\n <mi>∂</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>D</mi>\n <mi>d</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>⊗</mo>\n <mi>Q</mi>\n </mrow>\n <annotation>$\\pi _*(B\\mathrm{Diff}_{\\partial }(D^d))\\otimes {\\mathbb {Q}}$</annotation>\n </semantics></math> are lifted to homotopy groups of the moduli space of <math>\n <semantics>\n <mi>h</mi>\n <annotation>$h$</annotation>\n </semantics></math>-cobordisms <math>\n <semantics>\n <mrow>\n <msub>\n <mi>π</mi>\n <mo>∗</mo>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>B</mi>\n <msub>\n <mi>Diff</mi>\n <mo>⊔</mo>\n </msub>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>D</mi>\n <mi>d</mi>\n </msup>\n <mo>×</mo>\n <mi>I</mi>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>⊗</mo>\n <mi>Q</mi>\n </mrow>\n <annotation>$\\pi _*(B\\mathrm{Diff}_{\\sqcup }(D^d\\times I))\\otimes {\\mathbb {Q}}$</annotation>\n </semantics></math>. As a geometrical application, we show that those elements in <math>\n <semantics>\n <mrow>\n <msub>\n <mi>π</mi>\n <mo>∗</mo>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>B</mi>\n <msub>\n <mi>Diff</mi>\n <mi>∂</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>D</mi>\n <mi>d</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>⊗</mo>\n <mi>Q</mi>\n </mrow>\n <annotation>$\\pi _*(B\\mathrm{Diff}_{\\partial }(D^d))\\otimes {\\mathbb {Q}}$</annotation>\n </semantics></math> for <math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>⩾</mo>\n <mn>4</mn>\n </mrow>\n <annotation>$d\\geqslant 4$</annotation>\n </semantics></math> are also lifted to the rational homotopy groups <math>\n <semantics>\n <mrow>\n <msub>\n <mi>π</mi>\n <mo>∗</mo>\n </msub>\n <mrow>\n <mo>(</mo>\n <msubsup>\n <mi>M</mi>\n <mi>∂</mi>\n <mi>psc</mi>\n </msubsup>\n <msub>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>D</mi>\n <mi>d</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n <msub>\n <mi>h</mi>\n <mn>0</mn>\n </msub>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>⊗</mo>\n <mi>Q</mi>\n </mrow>\n <annotation>$\\pi _*(\\mathcal {M}^\\mathsf {psc}_{\\partial }(D^d)_{h_0})\\otimes {\\mathbb {Q}}$</annotation>\n </semantics></math> of the moduli space of positive scalar curvature metrics. Moreover, we show that the same elements come from the homotopy groups <math>\n <semantics>\n <mrow>\n <msub>\n <mi>π</mi>\n <mo>∗</mo>\n </msub>\n <mrow>\n <mo>(</mo>\n <msubsup>\n <mi>M</mi>\n <mo>⊔</mo>\n <mi>psc</mi>\n </msubsup>\n <msub>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>D</mi>\n <mi>d</mi>\n </msup>\n <mo>×</mo>\n <mi>I</mi>\n <mo>;</mo>\n <msub>\n <mi>g</mi>\n <mn>0</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <msub>\n <mi>h</mi>\n <mn>0</mn>\n </msub>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>⊗</mo>\n <mi>Q</mi>\n </mrow>\n <annotation>$\\pi _*(\\mathcal {M}^\\mathsf {psc}_{\\sqcup } (D^d\\times I; g_0)_{h_0})\\otimes {\\mathbb {Q}}$</annotation>\n </semantics></math> of moduli space of concordances of positive scalar curvature metrics on <math>\n <semantics>\n <msup>\n <mi>D</mi>\n <mi>d</mi>\n </msup>\n <annotation>$D^d$</annotation>\n </semantics></math> with fixed-round metric <math>\n <semantics>\n <msub>\n <mi>h</mi>\n <mn>0</mn>\n </msub>\n <annotation>$h_0$</annotation>\n </semantics></math> on the boundary <math>\n <semantics>\n <msup>\n <mi>S</mi>\n <mrow>\n <mi>d</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <annotation>$S^{d-1}$</annotation>\n </semantics></math>.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"16 1","pages":"207-233"},"PeriodicalIF":0.8000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Families of diffeomorphisms and concordances detected by trivalent graphs\",\"authors\":\"Boris Botvinnik, Tadayuki Watanabe\",\"doi\":\"10.1112/topo.12283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study families of diffeomorphisms detected by trivalent graphs via the Kontsevich classes. We specify some recent results and constructions of the second named author to show that those non-trivial elements in homotopy groups <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>π</mi>\\n <mo>∗</mo>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>B</mi>\\n <msub>\\n <mi>Diff</mi>\\n <mi>∂</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>D</mi>\\n <mi>d</mi>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <mo>⊗</mo>\\n <mi>Q</mi>\\n </mrow>\\n <annotation>$\\\\pi _*(B\\\\mathrm{Diff}_{\\\\partial }(D^d))\\\\otimes {\\\\mathbb {Q}}$</annotation>\\n </semantics></math> are lifted to homotopy groups of the moduli space of <math>\\n <semantics>\\n <mi>h</mi>\\n <annotation>$h$</annotation>\\n </semantics></math>-cobordisms <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>π</mi>\\n <mo>∗</mo>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>B</mi>\\n <msub>\\n <mi>Diff</mi>\\n <mo>⊔</mo>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>D</mi>\\n <mi>d</mi>\\n </msup>\\n <mo>×</mo>\\n <mi>I</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <mo>⊗</mo>\\n <mi>Q</mi>\\n </mrow>\\n <annotation>$\\\\pi _*(B\\\\mathrm{Diff}_{\\\\sqcup }(D^d\\\\times I))\\\\otimes {\\\\mathbb {Q}}$</annotation>\\n </semantics></math>. As a geometrical application, we show that those elements in <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>π</mi>\\n <mo>∗</mo>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>B</mi>\\n <msub>\\n <mi>Diff</mi>\\n <mi>∂</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>D</mi>\\n <mi>d</mi>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <mo>⊗</mo>\\n <mi>Q</mi>\\n </mrow>\\n <annotation>$\\\\pi _*(B\\\\mathrm{Diff}_{\\\\partial }(D^d))\\\\otimes {\\\\mathbb {Q}}$</annotation>\\n </semantics></math> for <math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>⩾</mo>\\n <mn>4</mn>\\n </mrow>\\n <annotation>$d\\\\geqslant 4$</annotation>\\n </semantics></math> are also lifted to the rational homotopy groups <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>π</mi>\\n <mo>∗</mo>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msubsup>\\n <mi>M</mi>\\n <mi>∂</mi>\\n <mi>psc</mi>\\n </msubsup>\\n <msub>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>D</mi>\\n <mi>d</mi>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <msub>\\n <mi>h</mi>\\n <mn>0</mn>\\n </msub>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mo>⊗</mo>\\n <mi>Q</mi>\\n </mrow>\\n <annotation>$\\\\pi _*(\\\\mathcal {M}^\\\\mathsf {psc}_{\\\\partial }(D^d)_{h_0})\\\\otimes {\\\\mathbb {Q}}$</annotation>\\n </semantics></math> of the moduli space of positive scalar curvature metrics. Moreover, we show that the same elements come from the homotopy groups <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>π</mi>\\n <mo>∗</mo>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msubsup>\\n <mi>M</mi>\\n <mo>⊔</mo>\\n <mi>psc</mi>\\n </msubsup>\\n <msub>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>D</mi>\\n <mi>d</mi>\\n </msup>\\n <mo>×</mo>\\n <mi>I</mi>\\n <mo>;</mo>\\n <msub>\\n <mi>g</mi>\\n <mn>0</mn>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <msub>\\n <mi>h</mi>\\n <mn>0</mn>\\n </msub>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mo>⊗</mo>\\n <mi>Q</mi>\\n </mrow>\\n <annotation>$\\\\pi _*(\\\\mathcal {M}^\\\\mathsf {psc}_{\\\\sqcup } (D^d\\\\times I; g_0)_{h_0})\\\\otimes {\\\\mathbb {Q}}$</annotation>\\n </semantics></math> of moduli space of concordances of positive scalar curvature metrics on <math>\\n <semantics>\\n <msup>\\n <mi>D</mi>\\n <mi>d</mi>\\n </msup>\\n <annotation>$D^d$</annotation>\\n </semantics></math> with fixed-round metric <math>\\n <semantics>\\n <msub>\\n <mi>h</mi>\\n <mn>0</mn>\\n </msub>\\n <annotation>$h_0$</annotation>\\n </semantics></math> on the boundary <math>\\n <semantics>\\n <msup>\\n <mi>S</mi>\\n <mrow>\\n <mi>d</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <annotation>$S^{d-1}$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":56114,\"journal\":{\"name\":\"Journal of Topology\",\"volume\":\"16 1\",\"pages\":\"207-233\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12283\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12283","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
引用
批量引用