热调制倾斜流体层的能量稳定性

IF 1.3 4区 工程技术 Q3 MECHANICS
M. Arora, Renu Bajaj
{"title":"热调制倾斜流体层的能量稳定性","authors":"M. Arora, Renu Bajaj","doi":"10.1088/1873-7005/ac8118","DOIUrl":null,"url":null,"abstract":"The stability of natural convection in thermally modulated inclined fluid layer is analyzed using linear instability analysis and generalized energy stability theory. A sufficient condition for the global stability of the fluid layer is obtained. The stability boundaries are found in terms of the Rayleigh number. Shooting method is used to find the stability limits numerically. Uncertain stability region is observed between the linear and the nonlinear stability boundaries. The onset of instability depends upon the frequency and the amplitude of modulation.","PeriodicalId":56311,"journal":{"name":"Fluid Dynamics Research","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy stability of thermally modulated inclined fluid layer\",\"authors\":\"M. Arora, Renu Bajaj\",\"doi\":\"10.1088/1873-7005/ac8118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The stability of natural convection in thermally modulated inclined fluid layer is analyzed using linear instability analysis and generalized energy stability theory. A sufficient condition for the global stability of the fluid layer is obtained. The stability boundaries are found in terms of the Rayleigh number. Shooting method is used to find the stability limits numerically. Uncertain stability region is observed between the linear and the nonlinear stability boundaries. The onset of instability depends upon the frequency and the amplitude of modulation.\",\"PeriodicalId\":56311,\"journal\":{\"name\":\"Fluid Dynamics Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Dynamics Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1873-7005/ac8118\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1873-7005/ac8118","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

利用线性不稳定性分析和广义能量稳定性理论,分析了热调制倾斜流体层中自然对流的稳定性。得到了流体层全局稳定性的一个充分条件。稳定性边界是根据瑞利数找到的。采用射击法对其稳定性极限进行了数值求解。在线性和非线性稳定边界之间观察到不确定稳定区域。不稳定性的开始取决于调制的频率和幅度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy stability of thermally modulated inclined fluid layer
The stability of natural convection in thermally modulated inclined fluid layer is analyzed using linear instability analysis and generalized energy stability theory. A sufficient condition for the global stability of the fluid layer is obtained. The stability boundaries are found in terms of the Rayleigh number. Shooting method is used to find the stability limits numerically. Uncertain stability region is observed between the linear and the nonlinear stability boundaries. The onset of instability depends upon the frequency and the amplitude of modulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fluid Dynamics Research
Fluid Dynamics Research 物理-力学
CiteScore
2.90
自引率
6.70%
发文量
37
审稿时长
5 months
期刊介绍: Fluid Dynamics Research publishes original and creative works in all fields of fluid dynamics. The scope includes theoretical, numerical and experimental studies that contribute to the fundamental understanding and/or application of fluid phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信