Dr.-Ing. Farah Z. Al-Atrash, Na'ela Hamdan, Raneem Mualla
{"title":"为流离失所者提供节能住房:迈向可持续营地","authors":"Dr.-Ing. Farah Z. Al-Atrash, Na'ela Hamdan, Raneem Mualla","doi":"10.1002/bapi.202200043","DOIUrl":null,"url":null,"abstract":"<p>The presented research addresses shortcomings in refugee camps in Jordan where humanitarian needs cannot be fully met. It provides an overview of significance of sustainability in shelter design and aims to rethink the future design process by giving more consideration to site factors of the camp area. It also describes the use of simulation programmes to create a well-designed shelter module. The study focuses on the construction of energy-efficient shelters for displaced persons in the region, with an emphasis on improving the indoor climate and reducing energy consumption. To answer the research question, hybrid data systems were used for two purposes: first, to identify the design factors associated with refugee shelter design, and second, to categorise these factors and incorporate them into the simulation to get the ideal module design. The simulation software SIM VICUS was used. As a result, basalt is proposed to be used for the design of new refugee shelters in Jordan. The basalt fibre panel as a construction material gives very good results for achieving sufficient indoor thermal comfort for the shelters. With the proposed design, the maximum indoor temperature in the hot season can be limited to 29.2 °C, with a difference of 10.8 K. In the cold season, the indoor temperature was low. In the cold season, the lowest indoor temperatures were 11.4 °C with a difference of 12.7 K.</p>","PeriodicalId":55397,"journal":{"name":"Bauphysik","volume":"45 3","pages":"160-171"},"PeriodicalIF":0.2000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy efficient shelter for displaced persons: towards sustainable camps\",\"authors\":\"Dr.-Ing. Farah Z. Al-Atrash, Na'ela Hamdan, Raneem Mualla\",\"doi\":\"10.1002/bapi.202200043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The presented research addresses shortcomings in refugee camps in Jordan where humanitarian needs cannot be fully met. It provides an overview of significance of sustainability in shelter design and aims to rethink the future design process by giving more consideration to site factors of the camp area. It also describes the use of simulation programmes to create a well-designed shelter module. The study focuses on the construction of energy-efficient shelters for displaced persons in the region, with an emphasis on improving the indoor climate and reducing energy consumption. To answer the research question, hybrid data systems were used for two purposes: first, to identify the design factors associated with refugee shelter design, and second, to categorise these factors and incorporate them into the simulation to get the ideal module design. The simulation software SIM VICUS was used. As a result, basalt is proposed to be used for the design of new refugee shelters in Jordan. The basalt fibre panel as a construction material gives very good results for achieving sufficient indoor thermal comfort for the shelters. With the proposed design, the maximum indoor temperature in the hot season can be limited to 29.2 °C, with a difference of 10.8 K. In the cold season, the indoor temperature was low. In the cold season, the lowest indoor temperatures were 11.4 °C with a difference of 12.7 K.</p>\",\"PeriodicalId\":55397,\"journal\":{\"name\":\"Bauphysik\",\"volume\":\"45 3\",\"pages\":\"160-171\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bauphysik\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bapi.202200043\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bauphysik","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bapi.202200043","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Energy efficient shelter for displaced persons: towards sustainable camps
The presented research addresses shortcomings in refugee camps in Jordan where humanitarian needs cannot be fully met. It provides an overview of significance of sustainability in shelter design and aims to rethink the future design process by giving more consideration to site factors of the camp area. It also describes the use of simulation programmes to create a well-designed shelter module. The study focuses on the construction of energy-efficient shelters for displaced persons in the region, with an emphasis on improving the indoor climate and reducing energy consumption. To answer the research question, hybrid data systems were used for two purposes: first, to identify the design factors associated with refugee shelter design, and second, to categorise these factors and incorporate them into the simulation to get the ideal module design. The simulation software SIM VICUS was used. As a result, basalt is proposed to be used for the design of new refugee shelters in Jordan. The basalt fibre panel as a construction material gives very good results for achieving sufficient indoor thermal comfort for the shelters. With the proposed design, the maximum indoor temperature in the hot season can be limited to 29.2 °C, with a difference of 10.8 K. In the cold season, the indoor temperature was low. In the cold season, the lowest indoor temperatures were 11.4 °C with a difference of 12.7 K.
期刊介绍:
Seit 35 Jahren ist Bauphysik die einzige deutsche Fachzeitschrift, die alle Einzelgebiete der Bauphysik bündelt. Hier werden jährlich ca. 35 wissenschaftliche Aufsätze und Projektberichte mit interdisziplinärem Hintergrund veröffentlicht und aktuelle technische Entwicklungen vorgestellt. Damit ist die Zeitschrift Spiegel der Forschung in Wissenschaft und Industrie und der Normung, mit starken Impulsen aus der Planungspraxis.
Themenüberblick:
Wärmeschutz
Feuchteschutz
Schallschutz und Raumakustik
Brandschutz
Tageslicht
Stadtbauphysik
Energiesparendes Bauen und Raumklima
Berechnungs- und Simulationsverfahren
Technische Regelwerke
Innovative Lösungen aus der Industrie