色氨酸分解产物和预测肠道菌群酶编码基因

IF 0.2 Q4 MEDICINE, GENERAL & INTERNAL
OP Shatova, A. Gaponov, T. Grigoryeva, I. Vasilyev, LS Stoletova, VV Makarov, S. Yudin, S. Roumiantsev, A. Shestopalov
{"title":"色氨酸分解产物和预测肠道菌群酶编码基因","authors":"OP Shatova, A. Gaponov, T. Grigoryeva, I. Vasilyev, LS Stoletova, VV Makarov, S. Yudin, S. Roumiantsev, A. Shestopalov","doi":"10.24075/brsmu.2023.027","DOIUrl":null,"url":null,"abstract":"The signaling role of tryptophan and its catabolites is well known. However, their effects on the potential microbiota metabolic activity is still poorly understood. The study was aimed to assess concordance between changes in the predicted gut microbiome enzyme-encoding gene abundance and the tryptophan catabolites. The study involved 109 healthy volunteers and 114 obese patients. Quantification of tryptophan catabolites in the feces was performed by HPLC. Bacterial DNA was extracted from fecal samples, and the 16S rRNA gene V3-V4 region was sequenced. Primary processing of the sequencing data was performed using the QIIME v.1.9.1 tool. The alleged metabolic role of microbiota members was explored via reconstruction of unobservable states using PICRUSt. The maximum number of significant correlations between the unobservable states and the predicted gut microbiome enzyme-encoding gene abundance in obese individuals was reported for indole-3-lactate. A significant correlation between indole-3-lactate and the abundance of genes encoding the enzymes involved in metabolism of fructose, amino sugars, nucleotides, amino acids, polyamines, and sulfosaccharides was revealed. It has been found that obese patients show a threefold increase in the indole-3lactate-producing microbiota. It has been shown that in obese individuals microbial population of the intestine is represented by the totally different genera and species of microorganisms. It is concluded that indole-3-lactate has a significant effect on the predicted gut microbiome enzyme-encoding gene abundance in obese patients.","PeriodicalId":9344,"journal":{"name":"Bulletin of Russian State Medical University","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tryptophan catabolites and predicted gut flora enzyme-encoding genes\",\"authors\":\"OP Shatova, A. Gaponov, T. Grigoryeva, I. Vasilyev, LS Stoletova, VV Makarov, S. Yudin, S. Roumiantsev, A. Shestopalov\",\"doi\":\"10.24075/brsmu.2023.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The signaling role of tryptophan and its catabolites is well known. However, their effects on the potential microbiota metabolic activity is still poorly understood. The study was aimed to assess concordance between changes in the predicted gut microbiome enzyme-encoding gene abundance and the tryptophan catabolites. The study involved 109 healthy volunteers and 114 obese patients. Quantification of tryptophan catabolites in the feces was performed by HPLC. Bacterial DNA was extracted from fecal samples, and the 16S rRNA gene V3-V4 region was sequenced. Primary processing of the sequencing data was performed using the QIIME v.1.9.1 tool. The alleged metabolic role of microbiota members was explored via reconstruction of unobservable states using PICRUSt. The maximum number of significant correlations between the unobservable states and the predicted gut microbiome enzyme-encoding gene abundance in obese individuals was reported for indole-3-lactate. A significant correlation between indole-3-lactate and the abundance of genes encoding the enzymes involved in metabolism of fructose, amino sugars, nucleotides, amino acids, polyamines, and sulfosaccharides was revealed. It has been found that obese patients show a threefold increase in the indole-3lactate-producing microbiota. It has been shown that in obese individuals microbial population of the intestine is represented by the totally different genera and species of microorganisms. It is concluded that indole-3-lactate has a significant effect on the predicted gut microbiome enzyme-encoding gene abundance in obese patients.\",\"PeriodicalId\":9344,\"journal\":{\"name\":\"Bulletin of Russian State Medical University\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Russian State Medical University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24075/brsmu.2023.027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Russian State Medical University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24075/brsmu.2023.027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

摘要

色氨酸及其分解产物的信号作用是众所周知的。然而,它们对潜在微生物群代谢活动的影响仍然知之甚少。该研究旨在评估预测肠道微生物组酶编码基因丰度变化与色氨酸分解代谢物之间的一致性。这项研究涉及109名健康志愿者和114名肥胖患者。采用高效液相色谱法测定粪便中色氨酸分解产物的含量。从粪便样品中提取细菌DNA,对16S rRNA基因V3-V4区进行测序。使用QIIME v.1.9.1工具对测序数据进行初步处理。通过使用PICRUSt重建不可观察状态,探索了微生物群成员所谓的代谢作用。据报道,在肥胖个体中,吲哚-3-乳酸盐的不可观察状态与预测的肠道微生物组酶编码基因丰度之间的显著相关性最大。研究发现,吲哚-3-乳酸与果糖、氨基糖、核苷酸、氨基酸、多胺和巯基糖代谢酶的基因丰度之间存在显著相关性。研究发现,肥胖患者体内产生吲哚-3乳酸的微生物群增加了三倍。研究表明,在肥胖个体中,肠道微生物群是由完全不同的微生物属和种所代表的。由此可见,吲哚-3-乳酸对肥胖患者肠道微生物组酶编码基因丰度的预测有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tryptophan catabolites and predicted gut flora enzyme-encoding genes
The signaling role of tryptophan and its catabolites is well known. However, their effects on the potential microbiota metabolic activity is still poorly understood. The study was aimed to assess concordance between changes in the predicted gut microbiome enzyme-encoding gene abundance and the tryptophan catabolites. The study involved 109 healthy volunteers and 114 obese patients. Quantification of tryptophan catabolites in the feces was performed by HPLC. Bacterial DNA was extracted from fecal samples, and the 16S rRNA gene V3-V4 region was sequenced. Primary processing of the sequencing data was performed using the QIIME v.1.9.1 tool. The alleged metabolic role of microbiota members was explored via reconstruction of unobservable states using PICRUSt. The maximum number of significant correlations between the unobservable states and the predicted gut microbiome enzyme-encoding gene abundance in obese individuals was reported for indole-3-lactate. A significant correlation between indole-3-lactate and the abundance of genes encoding the enzymes involved in metabolism of fructose, amino sugars, nucleotides, amino acids, polyamines, and sulfosaccharides was revealed. It has been found that obese patients show a threefold increase in the indole-3lactate-producing microbiota. It has been shown that in obese individuals microbial population of the intestine is represented by the totally different genera and species of microorganisms. It is concluded that indole-3-lactate has a significant effect on the predicted gut microbiome enzyme-encoding gene abundance in obese patients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of Russian State Medical University
Bulletin of Russian State Medical University MEDICINE, GENERAL & INTERNAL-
CiteScore
0.80
自引率
0.00%
发文量
59
期刊介绍: Bulletin of Russian State Medical University (Bulletin of RSMU, ISSN Print 2500–1094, ISSN Online 2542–1204) is a peer-reviewed medical journal of Pirogov Russian National Research Medical University (Moscow, Russia). The original language of the journal is Russian (Vestnik Rossiyskogo Gosudarstvennogo Meditsinskogo Universiteta, Vestnik RGMU, ISSN Print 2070–7320, ISSN Online 2070–7339). Founded in 1994, it is issued once every two months publishing articles on clinical medicine and medical and biological sciences, first of all oncology, neurobiology, allergy and immunology, medical genetics, medical microbiology and infectious diseases. Every issue is thematic. Deadlines for manuscript submission are announced in advance. The number of publications on topics in spite of the issue topic is limited. The journal accepts only original articles submitted by their authors, including articles that present methods and techniques, clinical cases and opinions. Authors must guarantee that their work has not been previously published elsewhere in whole or in part and in other languages and is not under consideration by another scientific journal. The journal publishes only one review per issue; the review is ordered by the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信