探索粒子滤波和卡尔曼滤波在移动机器人障碍物检测中的应用

Q3 Computer Science
Z. Gyenes, Ladislau Bölöni, Emese Gincsainé Szádeczky-Kardoss
{"title":"探索粒子滤波和卡尔曼滤波在移动机器人障碍物检测中的应用","authors":"Z. Gyenes, Ladislau Bölöni, Emese Gincsainé Szádeczky-Kardoss","doi":"10.3311/ppee.21969","DOIUrl":null,"url":null,"abstract":"The present study aims to explore the adaptation of estimation methodologies, specifically Particle filters and Kalman filters, for the purpose of determining the position and velocity vector of obstacles within the operational workspace of mobile robots. These algorithms are commonly employed in the motion planning tasks of mobile robots for the estimation of their own position. The proposed methodology utilizes LiDAR sensor data to estimate the position vectors and calculate the velocity vectors of obstacles. Additionally, an uncertainty parameter can be determined using the introduced perception method. The performance of the newly adapted algorithms is evaluated through comparison of the absolute error in position and velocity vector estimations.","PeriodicalId":37664,"journal":{"name":"Periodica polytechnica Electrical engineering and computer science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the Use of Particle and Kalman Filters for Obstacle Detection in Mobile Robots\",\"authors\":\"Z. Gyenes, Ladislau Bölöni, Emese Gincsainé Szádeczky-Kardoss\",\"doi\":\"10.3311/ppee.21969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study aims to explore the adaptation of estimation methodologies, specifically Particle filters and Kalman filters, for the purpose of determining the position and velocity vector of obstacles within the operational workspace of mobile robots. These algorithms are commonly employed in the motion planning tasks of mobile robots for the estimation of their own position. The proposed methodology utilizes LiDAR sensor data to estimate the position vectors and calculate the velocity vectors of obstacles. Additionally, an uncertainty parameter can be determined using the introduced perception method. The performance of the newly adapted algorithms is evaluated through comparison of the absolute error in position and velocity vector estimations.\",\"PeriodicalId\":37664,\"journal\":{\"name\":\"Periodica polytechnica Electrical engineering and computer science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica polytechnica Electrical engineering and computer science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3311/ppee.21969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica polytechnica Electrical engineering and computer science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3311/ppee.21969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在探索估计方法的适应性,特别是粒子滤波和卡尔曼滤波,以确定移动机器人操作工作空间内障碍物的位置和速度矢量。这些算法通常用于移动机器人的运动规划任务中,用于估计自身的位置。该方法利用激光雷达传感器数据估计障碍物的位置矢量和计算障碍物的速度矢量。此外,利用引入的感知方法可以确定不确定性参数。通过位置矢量估计和速度矢量估计的绝对误差比较,评价了新算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the Use of Particle and Kalman Filters for Obstacle Detection in Mobile Robots
The present study aims to explore the adaptation of estimation methodologies, specifically Particle filters and Kalman filters, for the purpose of determining the position and velocity vector of obstacles within the operational workspace of mobile robots. These algorithms are commonly employed in the motion planning tasks of mobile robots for the estimation of their own position. The proposed methodology utilizes LiDAR sensor data to estimate the position vectors and calculate the velocity vectors of obstacles. Additionally, an uncertainty parameter can be determined using the introduced perception method. The performance of the newly adapted algorithms is evaluated through comparison of the absolute error in position and velocity vector estimations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Periodica polytechnica Electrical engineering and computer science
Periodica polytechnica Electrical engineering and computer science Engineering-Electrical and Electronic Engineering
CiteScore
2.60
自引率
0.00%
发文量
36
期刊介绍: The main scope of the journal is to publish original research articles in the wide field of electrical engineering and informatics fitting into one of the following five Sections of the Journal: (i) Communication systems, networks and technology, (ii) Computer science and information theory, (iii) Control, signal processing and signal analysis, medical applications, (iv) Components, Microelectronics and Material Sciences, (v) Power engineering and mechatronics, (vi) Mobile Software, Internet of Things and Wearable Devices, (vii) Solid-state lighting and (viii) Vehicular Technology (land, airborne, and maritime mobile services; automotive, radar systems; antennas and radio wave propagation).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信