C. Mathan, P. Karthikeyan, P. Dineshkumar, K. Thanarajan
{"title":"Pt/C百分比和湿度对质子交换膜燃料电池电压衰减率影响的研究","authors":"C. Mathan, P. Karthikeyan, P. Dineshkumar, K. Thanarajan","doi":"10.1002/fuce.202200091","DOIUrl":null,"url":null,"abstract":"<p>Voltage degradation is the main parameter that determines the effective usable life of a fuel cell, here the influence of Pt/C% and relative humidity (RH%) on the voltage decay rate of a fuel cell is experimentally evaluated and reported. This study implements a stress test with frequent interrupts of purging for determining the durability of the fuel cells. In the course of the 1456 h stress test for each membrane electrode assembly (MEA), the polarization curve and electrochemical impedance spectroscopy (EIS) were measured. The experimental results make it evident that the lowest voltage degradation was 6 µV/h for MEA with 40% Pt/C tested under 70% RH while the highest was 183 µV/h recorded for MEA with 20% Pt/C tested under 90% RH. From EIS results, the ohmic resistance increased for all the tested MEAs, which is also reflected in the performance degradation. Field emission scanning electron microscopy images also indicate the delamination of MEA layers which in turn increases the electron transfer resistance. So, the decisive factors for the fuel cell performance degradation were flooding, catalyst surface contamination, and delamination of MEA layers due to repeated mechanical and chemical stresses.</p>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2022-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigation of the influence of Pt/C percentage and humidity on the voltage decay rate of proton exchange membrane fuel cell\",\"authors\":\"C. Mathan, P. Karthikeyan, P. Dineshkumar, K. Thanarajan\",\"doi\":\"10.1002/fuce.202200091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Voltage degradation is the main parameter that determines the effective usable life of a fuel cell, here the influence of Pt/C% and relative humidity (RH%) on the voltage decay rate of a fuel cell is experimentally evaluated and reported. This study implements a stress test with frequent interrupts of purging for determining the durability of the fuel cells. In the course of the 1456 h stress test for each membrane electrode assembly (MEA), the polarization curve and electrochemical impedance spectroscopy (EIS) were measured. The experimental results make it evident that the lowest voltage degradation was 6 µV/h for MEA with 40% Pt/C tested under 70% RH while the highest was 183 µV/h recorded for MEA with 20% Pt/C tested under 90% RH. From EIS results, the ohmic resistance increased for all the tested MEAs, which is also reflected in the performance degradation. Field emission scanning electron microscopy images also indicate the delamination of MEA layers which in turn increases the electron transfer resistance. So, the decisive factors for the fuel cell performance degradation were flooding, catalyst surface contamination, and delamination of MEA layers due to repeated mechanical and chemical stresses.</p>\",\"PeriodicalId\":12566,\"journal\":{\"name\":\"Fuel Cells\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel Cells\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fuce.202200091\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Cells","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fuce.202200091","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Investigation of the influence of Pt/C percentage and humidity on the voltage decay rate of proton exchange membrane fuel cell
Voltage degradation is the main parameter that determines the effective usable life of a fuel cell, here the influence of Pt/C% and relative humidity (RH%) on the voltage decay rate of a fuel cell is experimentally evaluated and reported. This study implements a stress test with frequent interrupts of purging for determining the durability of the fuel cells. In the course of the 1456 h stress test for each membrane electrode assembly (MEA), the polarization curve and electrochemical impedance spectroscopy (EIS) were measured. The experimental results make it evident that the lowest voltage degradation was 6 µV/h for MEA with 40% Pt/C tested under 70% RH while the highest was 183 µV/h recorded for MEA with 20% Pt/C tested under 90% RH. From EIS results, the ohmic resistance increased for all the tested MEAs, which is also reflected in the performance degradation. Field emission scanning electron microscopy images also indicate the delamination of MEA layers which in turn increases the electron transfer resistance. So, the decisive factors for the fuel cell performance degradation were flooding, catalyst surface contamination, and delamination of MEA layers due to repeated mechanical and chemical stresses.
期刊介绍:
This journal is only available online from 2011 onwards.
Fuel Cells — From Fundamentals to Systems publishes on all aspects of fuel cells, ranging from their molecular basis to their applications in systems such as power plants, road vehicles and power sources in portables.
Fuel Cells is a platform for scientific exchange in a diverse interdisciplinary field. All related work in
-chemistry-
materials science-
physics-
chemical engineering-
electrical engineering-
mechanical engineering-
is included.
Fuel Cells—From Fundamentals to Systems has an International Editorial Board and Editorial Advisory Board, with each Editor being a renowned expert representing a key discipline in the field from either a distinguished academic institution or one of the globally leading companies.
Fuel Cells—From Fundamentals to Systems is designed to meet the needs of scientists and engineers who are actively working in the field. Until now, information on materials, stack technology and system approaches has been dispersed over a number of traditional scientific journals dedicated to classical disciplines such as electrochemistry, materials science or power technology.
Fuel Cells—From Fundamentals to Systems concentrates on the publication of peer-reviewed original research papers and reviews.