{"title":"碳氢燃料蓄热冷却工作状态图","authors":"Chen Zhang , Hui Gao , Jiajun Zhao , Guice Yao , Dongsheng Wen","doi":"10.1016/j.jppr.2023.05.002","DOIUrl":null,"url":null,"abstract":"<div><p>Regenerative cooling by endothermic hydrocarbon fuel (EHF) is one of the most promising techniques for thermal management of supersonic or hypersonic aircraft. How to maintain the fuel working in proper states is an important issue to maximize the cooling potential of EHT. This work proposes a novel working state map, including risking zone (RZ), thermal cracking zone (TCZ), supercritical zone (SupZ) and subcritical zone (SubZ), to differentiate possible working states of an EHF during regenerative cooling. Using <em>n</em>-decane flowing in a circular tube as an example, the boundaries of four zones are determined by numerical simulation covering different heat fluxes (0.2–4.0 MW<strong>·</strong>m<sup>−2</sup>) and mass flow rates (0.5–10.5 g<strong>·</strong>s<sup>−1</sup>) under two operating pressures (3.45 and 5.00 MPa). Empirical correlations for three boundary lines are obtained and the maximum cooling capacity is identified, as well as the identification of the pressure effect. The revelation of such new perspective of regenerative cooling is of great implication to the design and optimization of cooling system for future thermal management.</p></div>","PeriodicalId":51341,"journal":{"name":"Propulsion and Power Research","volume":"12 2","pages":"Pages 199-211"},"PeriodicalIF":5.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Working state map of hydrocarbon fuels for regenerative cooling\",\"authors\":\"Chen Zhang , Hui Gao , Jiajun Zhao , Guice Yao , Dongsheng Wen\",\"doi\":\"10.1016/j.jppr.2023.05.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Regenerative cooling by endothermic hydrocarbon fuel (EHF) is one of the most promising techniques for thermal management of supersonic or hypersonic aircraft. How to maintain the fuel working in proper states is an important issue to maximize the cooling potential of EHT. This work proposes a novel working state map, including risking zone (RZ), thermal cracking zone (TCZ), supercritical zone (SupZ) and subcritical zone (SubZ), to differentiate possible working states of an EHF during regenerative cooling. Using <em>n</em>-decane flowing in a circular tube as an example, the boundaries of four zones are determined by numerical simulation covering different heat fluxes (0.2–4.0 MW<strong>·</strong>m<sup>−2</sup>) and mass flow rates (0.5–10.5 g<strong>·</strong>s<sup>−1</sup>) under two operating pressures (3.45 and 5.00 MPa). Empirical correlations for three boundary lines are obtained and the maximum cooling capacity is identified, as well as the identification of the pressure effect. The revelation of such new perspective of regenerative cooling is of great implication to the design and optimization of cooling system for future thermal management.</p></div>\",\"PeriodicalId\":51341,\"journal\":{\"name\":\"Propulsion and Power Research\",\"volume\":\"12 2\",\"pages\":\"Pages 199-211\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Propulsion and Power Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212540X23000330\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Propulsion and Power Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212540X23000330","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Working state map of hydrocarbon fuels for regenerative cooling
Regenerative cooling by endothermic hydrocarbon fuel (EHF) is one of the most promising techniques for thermal management of supersonic or hypersonic aircraft. How to maintain the fuel working in proper states is an important issue to maximize the cooling potential of EHT. This work proposes a novel working state map, including risking zone (RZ), thermal cracking zone (TCZ), supercritical zone (SupZ) and subcritical zone (SubZ), to differentiate possible working states of an EHF during regenerative cooling. Using n-decane flowing in a circular tube as an example, the boundaries of four zones are determined by numerical simulation covering different heat fluxes (0.2–4.0 MW·m−2) and mass flow rates (0.5–10.5 g·s−1) under two operating pressures (3.45 and 5.00 MPa). Empirical correlations for three boundary lines are obtained and the maximum cooling capacity is identified, as well as the identification of the pressure effect. The revelation of such new perspective of regenerative cooling is of great implication to the design and optimization of cooling system for future thermal management.
期刊介绍:
Propulsion and Power Research is a peer reviewed scientific journal in English established in 2012. The Journals publishes high quality original research articles and general reviews in fundamental research aspects of aeronautics/astronautics propulsion and power engineering, including, but not limited to, system, fluid mechanics, heat transfer, combustion, vibration and acoustics, solid mechanics and dynamics, control and so on. The journal serves as a platform for academic exchange by experts, scholars and researchers in these fields.