单位圆上的半经典权函数

IF 0.9 3区 数学 Q2 MATHEMATICS
Cleonice F. Bracciali , Karina S. Rampazzi , Luana L. Silva Ribeiro
{"title":"单位圆上的半经典权函数","authors":"Cleonice F. Bracciali ,&nbsp;Karina S. Rampazzi ,&nbsp;Luana L. Silva Ribeiro","doi":"10.1016/j.jat.2023.105957","DOIUrl":null,"url":null,"abstract":"<div><p>We consider orthogonal polynomials on the unit circle associated with certain semi-classical weight functions. This means that the Pearson-type differential equations satisfied by these weight functions involve two polynomials of degree at most 2. We determine all such semi-classical weight functions and this also includes an extension of the Jacobi weight function on the unit circle. General structure relations for the orthogonal polynomials and non-linear difference equations for the associated complex Verblunsky coefficients are established. As application, we present several new structure relations and non-linear difference equations associated with some of these semi-classical weight functions.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On semi-classical weight functions on the unit circle\",\"authors\":\"Cleonice F. Bracciali ,&nbsp;Karina S. Rampazzi ,&nbsp;Luana L. Silva Ribeiro\",\"doi\":\"10.1016/j.jat.2023.105957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider orthogonal polynomials on the unit circle associated with certain semi-classical weight functions. This means that the Pearson-type differential equations satisfied by these weight functions involve two polynomials of degree at most 2. We determine all such semi-classical weight functions and this also includes an extension of the Jacobi weight function on the unit circle. General structure relations for the orthogonal polynomials and non-linear difference equations for the associated complex Verblunsky coefficients are established. As application, we present several new structure relations and non-linear difference equations associated with some of these semi-classical weight functions.</p></div>\",\"PeriodicalId\":54878,\"journal\":{\"name\":\"Journal of Approximation Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Approximation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021904523000953\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904523000953","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑与某些半经典权函数相关的单位圆上的正交多项式。这意味着这些权函数所满足的皮尔逊型微分方程包含两个至多2次的多项式。我们确定了所有这样的半经典权函数,这也包括Jacobi权函数在单位圆上的扩展。建立了正交多项式的一般结构关系和相关复Verblunsky系数的非线性差分方程。作为应用,我们提出了几个新的结构关系和与这些半经典权函数相关的非线性差分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On semi-classical weight functions on the unit circle

We consider orthogonal polynomials on the unit circle associated with certain semi-classical weight functions. This means that the Pearson-type differential equations satisfied by these weight functions involve two polynomials of degree at most 2. We determine all such semi-classical weight functions and this also includes an extension of the Jacobi weight function on the unit circle. General structure relations for the orthogonal polynomials and non-linear difference equations for the associated complex Verblunsky coefficients are established. As application, we present several new structure relations and non-linear difference equations associated with some of these semi-classical weight functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
11.10%
发文量
55
审稿时长
6-12 weeks
期刊介绍: The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others: • Classical approximation • Abstract approximation • Constructive approximation • Degree of approximation • Fourier expansions • Interpolation of operators • General orthogonal systems • Interpolation and quadratures • Multivariate approximation • Orthogonal polynomials • Padé approximation • Rational approximation • Spline functions of one and several variables • Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds • Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth) • Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis • Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth) • Gabor (Weyl-Heisenberg) expansions and sampling theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信