Zihan Li, Jianwen Xin, Xueming Hua, Dongsheng Wu, S. Tashiro, Manabu Tanaka, Huan Wang
{"title":"等离子弧焊中金属蒸气的影响机理","authors":"Zihan Li, Jianwen Xin, Xueming Hua, Dongsheng Wu, S. Tashiro, Manabu Tanaka, Huan Wang","doi":"10.29391/2022.101.012","DOIUrl":null,"url":null,"abstract":"A three-dimensional coupled tungsten electrode–plasma arc–metal vapor– weld pool model was developed to investigate plasma arc and metal vapor characteristics, weld pool convection, and energy transfer in conduction plasma arc lap welding. The arc energy efficiency was also calculated. The numerical results showed that in conduction plasma arc lap welding, the constraint effects of the plasma arc by a small constricting nozzle, plasma gas, and electromagnetic force were strong, and no keyhole was formed inside the weld pool, so the heat flux on the weld pool surface was high as well as the weld pool temperature and mole fraction of Fe vapor above the weld pool surface. The high concentration of Fe vapor in the arc decreased the conduction energy from the plasma arc to the weld pool along with the arc energy efficiency. The calculated arc energy efficiency was only 50.2%. Without considering Fe vapor, the calculated weld pool had complete joint penetration. When considering Fe vapor, the calculated weld geometry agreed well with the experimental result.","PeriodicalId":23681,"journal":{"name":"Welding Journal","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence Mechanism of Metal Vapor in Plasma Arc Lap Welding\",\"authors\":\"Zihan Li, Jianwen Xin, Xueming Hua, Dongsheng Wu, S. Tashiro, Manabu Tanaka, Huan Wang\",\"doi\":\"10.29391/2022.101.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A three-dimensional coupled tungsten electrode–plasma arc–metal vapor– weld pool model was developed to investigate plasma arc and metal vapor characteristics, weld pool convection, and energy transfer in conduction plasma arc lap welding. The arc energy efficiency was also calculated. The numerical results showed that in conduction plasma arc lap welding, the constraint effects of the plasma arc by a small constricting nozzle, plasma gas, and electromagnetic force were strong, and no keyhole was formed inside the weld pool, so the heat flux on the weld pool surface was high as well as the weld pool temperature and mole fraction of Fe vapor above the weld pool surface. The high concentration of Fe vapor in the arc decreased the conduction energy from the plasma arc to the weld pool along with the arc energy efficiency. The calculated arc energy efficiency was only 50.2%. Without considering Fe vapor, the calculated weld pool had complete joint penetration. When considering Fe vapor, the calculated weld geometry agreed well with the experimental result.\",\"PeriodicalId\":23681,\"journal\":{\"name\":\"Welding Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Welding Journal\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.29391/2022.101.012\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.29391/2022.101.012","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Influence Mechanism of Metal Vapor in Plasma Arc Lap Welding
A three-dimensional coupled tungsten electrode–plasma arc–metal vapor– weld pool model was developed to investigate plasma arc and metal vapor characteristics, weld pool convection, and energy transfer in conduction plasma arc lap welding. The arc energy efficiency was also calculated. The numerical results showed that in conduction plasma arc lap welding, the constraint effects of the plasma arc by a small constricting nozzle, plasma gas, and electromagnetic force were strong, and no keyhole was formed inside the weld pool, so the heat flux on the weld pool surface was high as well as the weld pool temperature and mole fraction of Fe vapor above the weld pool surface. The high concentration of Fe vapor in the arc decreased the conduction energy from the plasma arc to the weld pool along with the arc energy efficiency. The calculated arc energy efficiency was only 50.2%. Without considering Fe vapor, the calculated weld pool had complete joint penetration. When considering Fe vapor, the calculated weld geometry agreed well with the experimental result.
期刊介绍:
The Welding Journal has been published continually since 1922 — an unmatched link to all issues and advancements concerning metal fabrication and construction.
Each month the Welding Journal delivers news of the welding and metal fabricating industry. Stay informed on the latest products, trends, technology and events via in-depth articles, full-color photos and illustrations, and timely, cost-saving advice. Also featured are articles and supplements on related activities, such as testing and inspection, maintenance and repair, design, training, personal safety, and brazing and soldering.