球形卡皮察-惠特尼钟摆

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
Ivan Yu. Polekhin
{"title":"球形卡皮察-惠特尼钟摆","authors":"Ivan Yu. Polekhin","doi":"10.1134/S1560354722010075","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we study the global dynamics of the inverted spherical pendulum with a vertically rapidly vibrating suspension point in the presence of an external horizontal periodic force field. We do not assume that this force field is weak or rapidly oscillating. Provided that the period of the vertical motion and the period of the horizontal force are commensurate, we prove that there always exists a nonfalling periodic\nsolution, i. e., there exists an initial condition such that, along the corresponding solution, the rod of the pendulum always remains above the horizontal plane passing through the pivot point. We also show numerically that there exists an asymptotically stable nonfalling solution for a wide range of parameters of the system.</p></div>","PeriodicalId":752,"journal":{"name":"Regular and Chaotic Dynamics","volume":"27 1","pages":"65 - 76"},"PeriodicalIF":0.8000,"publicationDate":"2022-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Spherical Kapitza – Whitney Pendulum\",\"authors\":\"Ivan Yu. Polekhin\",\"doi\":\"10.1134/S1560354722010075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we study the global dynamics of the inverted spherical pendulum with a vertically rapidly vibrating suspension point in the presence of an external horizontal periodic force field. We do not assume that this force field is weak or rapidly oscillating. Provided that the period of the vertical motion and the period of the horizontal force are commensurate, we prove that there always exists a nonfalling periodic\\nsolution, i. e., there exists an initial condition such that, along the corresponding solution, the rod of the pendulum always remains above the horizontal plane passing through the pivot point. We also show numerically that there exists an asymptotically stable nonfalling solution for a wide range of parameters of the system.</p></div>\",\"PeriodicalId\":752,\"journal\":{\"name\":\"Regular and Chaotic Dynamics\",\"volume\":\"27 1\",\"pages\":\"65 - 76\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regular and Chaotic Dynamics\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1560354722010075\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regular and Chaotic Dynamics","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S1560354722010075","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了具有垂直快速振动悬点的倒立球摆在外加水平周期力场作用下的整体动力学问题。我们不假设这个力场很弱或振荡很快。在垂直运动周期和水平力周期相等的条件下,我们证明了总存在一个不下落的周期解,即存在一个初始条件,使得摆杆沿对应的解始终保持在经过轴心点的水平面上方。我们还用数值方法证明了系统在大参数范围内存在渐近稳定的非下降解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Spherical Kapitza – Whitney Pendulum

In this paper we study the global dynamics of the inverted spherical pendulum with a vertically rapidly vibrating suspension point in the presence of an external horizontal periodic force field. We do not assume that this force field is weak or rapidly oscillating. Provided that the period of the vertical motion and the period of the horizontal force are commensurate, we prove that there always exists a nonfalling periodic solution, i. e., there exists an initial condition such that, along the corresponding solution, the rod of the pendulum always remains above the horizontal plane passing through the pivot point. We also show numerically that there exists an asymptotically stable nonfalling solution for a wide range of parameters of the system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.10%
发文量
35
审稿时长
>12 weeks
期刊介绍: Regular and Chaotic Dynamics (RCD) is an international journal publishing original research papers in dynamical systems theory and its applications. Rooted in the Moscow school of mathematics and mechanics, the journal successfully combines classical problems, modern mathematical techniques and breakthroughs in the field. Regular and Chaotic Dynamics welcomes papers that establish original results, characterized by rigorous mathematical settings and proofs, and that also address practical problems. In addition to research papers, the journal publishes review articles, historical and polemical essays, and translations of works by influential scientists of past centuries, previously unavailable in English. Along with regular issues, RCD also publishes special issues devoted to particular topics and events in the world of dynamical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信