一种采用L--S谐振网络的改进型零电压零电流过渡升压变换器

Q2 Energy
N Anandh, Akhilesh Sharma, S JuliusFusic, H. Ramesh
{"title":"一种采用L--S谐振网络的改进型零电压零电流过渡升压变换器","authors":"N Anandh, Akhilesh Sharma, S JuliusFusic, H. Ramesh","doi":"10.11591/IJPEDS.V11.I4.PP1844-1856","DOIUrl":null,"url":null,"abstract":"An improved zero-voltage zero-current transition boost converter (IZVZCTBC) is introduced. This converter is basically a fourth-order DC-DC converter wherein a L-C-S (Inductor–Capacitor–Switch) resonant circuit is embedded for soft-switching. L-C-S tank network is the modified version of conventional ZVZCT switch cell. The main feature of L-C-S tank circuit is to enhance the performance of zero-voltage zero-current transition boost converter in terms of eliminating the high current stress, decreasing the switching losses and increasing the efficiency of converter. This converter exhibits both zero-voltage turn on and zero-current turn off switching characteristics based on the gating signals applied to switches. The principle of operation and time domain expressions of IZVZCT boost converter with L-C-S cell are presented. For the closed loop operation, digital controller is designed and the performance of the controller has been validated through simulation for different line and load variations. The mathematical and theoretical analysis is verified accurately by a 12-24 V, 30 W converter through PSIM simulation software and the results ensures that overall efficiency of the converter has improved to 97% along with elimination of current stress.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"11 1","pages":"1844-1856"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An improved zero-voltage zero-current transition boost converter employing L-C-S resonant network\",\"authors\":\"N Anandh, Akhilesh Sharma, S JuliusFusic, H. Ramesh\",\"doi\":\"10.11591/IJPEDS.V11.I4.PP1844-1856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An improved zero-voltage zero-current transition boost converter (IZVZCTBC) is introduced. This converter is basically a fourth-order DC-DC converter wherein a L-C-S (Inductor–Capacitor–Switch) resonant circuit is embedded for soft-switching. L-C-S tank network is the modified version of conventional ZVZCT switch cell. The main feature of L-C-S tank circuit is to enhance the performance of zero-voltage zero-current transition boost converter in terms of eliminating the high current stress, decreasing the switching losses and increasing the efficiency of converter. This converter exhibits both zero-voltage turn on and zero-current turn off switching characteristics based on the gating signals applied to switches. The principle of operation and time domain expressions of IZVZCT boost converter with L-C-S cell are presented. For the closed loop operation, digital controller is designed and the performance of the controller has been validated through simulation for different line and load variations. The mathematical and theoretical analysis is verified accurately by a 12-24 V, 30 W converter through PSIM simulation software and the results ensures that overall efficiency of the converter has improved to 97% along with elimination of current stress.\",\"PeriodicalId\":38280,\"journal\":{\"name\":\"International Journal of Power Electronics and Drive Systems\",\"volume\":\"11 1\",\"pages\":\"1844-1856\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Power Electronics and Drive Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/IJPEDS.V11.I4.PP1844-1856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Power Electronics and Drive Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/IJPEDS.V11.I4.PP1844-1856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 1

摘要

介绍了一种改进的零电压零电流过渡升压变换器(IZVZCTBC)。该转换器基本上是一个四阶DC-DC转换器,其中嵌入了L--S(电感器-电容器-开关)谐振电路用于软开关。L-CS槽网络是传统ZVZCT开关单元的改进版本。L-CS储能电路的主要特点是在消除高电流应力、降低开关损耗和提高转换器效率方面提高零电压-零电流过渡升压转换器的性能。该转换器基于施加到开关的选通信号表现出零电压导通和零电流关断的开关特性。介绍了采用L-C-S单元的IZVZCT升压变换器的工作原理和时域表达式。对于闭环操作,设计了数字控制器,并通过仿真验证了控制器在不同线路和负载变化下的性能。数学和理论分析通过PSIM仿真软件通过12-24V,30W的转换器进行了准确的验证,结果确保了转换器的整体效率提高到97%,同时消除了电流应力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved zero-voltage zero-current transition boost converter employing L-C-S resonant network
An improved zero-voltage zero-current transition boost converter (IZVZCTBC) is introduced. This converter is basically a fourth-order DC-DC converter wherein a L-C-S (Inductor–Capacitor–Switch) resonant circuit is embedded for soft-switching. L-C-S tank network is the modified version of conventional ZVZCT switch cell. The main feature of L-C-S tank circuit is to enhance the performance of zero-voltage zero-current transition boost converter in terms of eliminating the high current stress, decreasing the switching losses and increasing the efficiency of converter. This converter exhibits both zero-voltage turn on and zero-current turn off switching characteristics based on the gating signals applied to switches. The principle of operation and time domain expressions of IZVZCT boost converter with L-C-S cell are presented. For the closed loop operation, digital controller is designed and the performance of the controller has been validated through simulation for different line and load variations. The mathematical and theoretical analysis is verified accurately by a 12-24 V, 30 W converter through PSIM simulation software and the results ensures that overall efficiency of the converter has improved to 97% along with elimination of current stress.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Power Electronics and Drive Systems
International Journal of Power Electronics and Drive Systems Energy-Energy Engineering and Power Technology
CiteScore
3.50
自引率
0.00%
发文量
0
期刊介绍: International Journal of Power Electronics and Drive Systems (IJPEDS) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of power electronics and electrical drive systems from the global world. The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, applications in motor drives, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信