"在有路径的六个顶点的轮子连接处的交叉数上"

IF 1.4 4区 数学 Q1 MATHEMATICS
"ŠTEFAN ŠTEFAN" Berežný, M. Staš
{"title":"\"在有路径的六个顶点的轮子连接处的交叉数上\"","authors":"\"ŠTEFAN ŠTEFAN\" Berežný, M. Staš","doi":"10.37193/cjm.2022.02.06","DOIUrl":null,"url":null,"abstract":"The crossing number $\\mathrm{cr}(G)$ of a graph $G$ is the minimum number of edge crossings over all drawings of $G$ in the plane. The main aim of the paper is to give the crossing number of join product $W_5+P_n$ for the wheel $W_5$ on six vertices, where $P_n$ is the path on $n$ vertices. Sta\\v s and Valiska conjectured that the crossing number of $W_m+P_n$ is equal to $Z(m+1)Z(n) + (Z(m)-1) \\big \\lfloor \\frac{n}{2} \\big \\rfloor + n +1$, for all $m\\geq 3$, $n\\geq 2$, where Zarankiewicz's number is defined as $Z(n)=\\big \\lfloor \\frac{n}{2} \\big \\rfloor \\big \\lfloor \\frac{n-1}{2} \\big \\rfloor $ for $n\\geq 1$. Recently, this conjecture was proved for $W_3+P_n$ by Kle\\v s\\v c and Schr\\\"otter, and for $W_4+P_n$ by Sta\\v s and Valiska. We establish the validity of this conjecture for $W_5+P_n$. The conjecture also holds due to some isomorphisms for $W_m+P_2$, $W_m+P_3$ by Kle\\v s\\v c, and for $W_m+P_4$ by Sta\\v s for all $m\\geq 3$.","PeriodicalId":50711,"journal":{"name":"Carpathian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"\\\"On the crossing number of the join of the wheel on six vertices with a path\\\"\",\"authors\":\"\\\"ŠTEFAN ŠTEFAN\\\" Berežný, M. Staš\",\"doi\":\"10.37193/cjm.2022.02.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The crossing number $\\\\mathrm{cr}(G)$ of a graph $G$ is the minimum number of edge crossings over all drawings of $G$ in the plane. The main aim of the paper is to give the crossing number of join product $W_5+P_n$ for the wheel $W_5$ on six vertices, where $P_n$ is the path on $n$ vertices. Sta\\\\v s and Valiska conjectured that the crossing number of $W_m+P_n$ is equal to $Z(m+1)Z(n) + (Z(m)-1) \\\\big \\\\lfloor \\\\frac{n}{2} \\\\big \\\\rfloor + n +1$, for all $m\\\\geq 3$, $n\\\\geq 2$, where Zarankiewicz's number is defined as $Z(n)=\\\\big \\\\lfloor \\\\frac{n}{2} \\\\big \\\\rfloor \\\\big \\\\lfloor \\\\frac{n-1}{2} \\\\big \\\\rfloor $ for $n\\\\geq 1$. Recently, this conjecture was proved for $W_3+P_n$ by Kle\\\\v s\\\\v c and Schr\\\\\\\"otter, and for $W_4+P_n$ by Sta\\\\v s and Valiska. We establish the validity of this conjecture for $W_5+P_n$. The conjecture also holds due to some isomorphisms for $W_m+P_2$, $W_m+P_3$ by Kle\\\\v s\\\\v c, and for $W_m+P_4$ by Sta\\\\v s for all $m\\\\geq 3$.\",\"PeriodicalId\":50711,\"journal\":{\"name\":\"Carpathian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37193/cjm.2022.02.06\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37193/cjm.2022.02.06","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

图形$G$的交叉数$\mathrm{cr}(G)$是平面中$G$所有图形的最小边交叉数。本文的主要目的是给出车轮$W_5$在六个顶点上的连接乘积$W_5+P_n$的交叉数,其中$P_n$是$n$顶点上的路径。Sta\v s和Valiska推测$W_m+P_n$的交叉数等于$Z(m+1)Z(n)+(Z(m)-1)\big\lfloor\frac{n}{2}\big\rfloor+n+1$,对于所有$m\geq3$,$n\geq2$,其中Zarankiewicz的数定义为$Z(n rfloor$换$n\geq1$。最近,Kle和Schr分别证明了$W_3+P_n$和$W_4+P_n$的猜想,Sta和Valiska分别证明了这一猜想的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
"On the crossing number of the join of the wheel on six vertices with a path"
The crossing number $\mathrm{cr}(G)$ of a graph $G$ is the minimum number of edge crossings over all drawings of $G$ in the plane. The main aim of the paper is to give the crossing number of join product $W_5+P_n$ for the wheel $W_5$ on six vertices, where $P_n$ is the path on $n$ vertices. Sta\v s and Valiska conjectured that the crossing number of $W_m+P_n$ is equal to $Z(m+1)Z(n) + (Z(m)-1) \big \lfloor \frac{n}{2} \big \rfloor + n +1$, for all $m\geq 3$, $n\geq 2$, where Zarankiewicz's number is defined as $Z(n)=\big \lfloor \frac{n}{2} \big \rfloor \big \lfloor \frac{n-1}{2} \big \rfloor $ for $n\geq 1$. Recently, this conjecture was proved for $W_3+P_n$ by Kle\v s\v c and Schr\"otter, and for $W_4+P_n$ by Sta\v s and Valiska. We establish the validity of this conjecture for $W_5+P_n$. The conjecture also holds due to some isomorphisms for $W_m+P_2$, $W_m+P_3$ by Kle\v s\v c, and for $W_m+P_4$ by Sta\v s for all $m\geq 3$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carpathian Journal of Mathematics
Carpathian Journal of Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
7.10%
发文量
21
审稿时长
>12 weeks
期刊介绍: Carpathian Journal of Mathematics publishes high quality original research papers and survey articles in all areas of pure and applied mathematics. It will also occasionally publish, as special issues, proceedings of international conferences, generally (co)-organized by the Department of Mathematics and Computer Science, North University Center at Baia Mare. There is no fee for the published papers but the journal offers an Open Access Option to interested contributors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信