纵向调查中缺失机制的检验:以健康与退休研究为例

IF 3 3区 社会学 Q1 SOCIAL SCIENCES, INTERDISCIPLINARY
Peiyi Lu, M. Shelley
{"title":"纵向调查中缺失机制的检验:以健康与退休研究为例","authors":"Peiyi Lu, M. Shelley","doi":"10.1080/13645579.2022.2049509","DOIUrl":null,"url":null,"abstract":"ABSTRACT Imputation or likelihood-based approaches to handle missing data assume the data are missing completely at random (MCAR) or missing at random (MAR). However, little research has examined the missingness pattern before using these imputation/likelihood methods. Three missingness mechanisms – MCAR, MAR, and not missing at random (NMAR) – can be tested using information on research design, disciplinary knowledge, and appropriate methods. This study summarized six commonly used statistical methods to test the missingness mechanism and discussed their application conditions. We further applied these methods to a two-wave longitudinal dataset from the Health and Retirement Study (N = 18,747). Health measures met the MAR assumptions although we could not completely rule out NMAR. Demographic variables provided auxiliary information. The logistic regression method demonstrated applicability to a wide range of scenarios. This study provides a useful guide to choose methods to test missingness mechanisms depending on the research goal and nature of the data.","PeriodicalId":14272,"journal":{"name":"International Journal of Social Research Methodology","volume":"26 1","pages":"439 - 452"},"PeriodicalIF":3.0000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Testing the missingness mechanism in longitudinal surveys: a case study using the Health and Retirement Study\",\"authors\":\"Peiyi Lu, M. Shelley\",\"doi\":\"10.1080/13645579.2022.2049509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Imputation or likelihood-based approaches to handle missing data assume the data are missing completely at random (MCAR) or missing at random (MAR). However, little research has examined the missingness pattern before using these imputation/likelihood methods. Three missingness mechanisms – MCAR, MAR, and not missing at random (NMAR) – can be tested using information on research design, disciplinary knowledge, and appropriate methods. This study summarized six commonly used statistical methods to test the missingness mechanism and discussed their application conditions. We further applied these methods to a two-wave longitudinal dataset from the Health and Retirement Study (N = 18,747). Health measures met the MAR assumptions although we could not completely rule out NMAR. Demographic variables provided auxiliary information. The logistic regression method demonstrated applicability to a wide range of scenarios. This study provides a useful guide to choose methods to test missingness mechanisms depending on the research goal and nature of the data.\",\"PeriodicalId\":14272,\"journal\":{\"name\":\"International Journal of Social Research Methodology\",\"volume\":\"26 1\",\"pages\":\"439 - 452\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Social Research Methodology\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1080/13645579.2022.2049509\",\"RegionNum\":3,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL SCIENCES, INTERDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Social Research Methodology","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1080/13645579.2022.2049509","RegionNum":3,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

处理缺失数据的插值或基于似然的方法假设数据完全随机缺失(MCAR)或随机缺失(MAR)。然而,在使用这些归算/似然方法之前,很少有研究检查缺失模式。可以使用有关研究设计、学科知识和适当方法的信息来测试三种缺失机制——MCAR、MAR和非随机缺失(NMAR)。本文总结了六种常用的检测缺失机制的统计方法,并讨论了它们的适用条件。我们进一步将这些方法应用于来自健康与退休研究的两波纵向数据集(N = 18,747)。尽管我们不能完全排除NMAR的可能性,但健康措施符合NMAR的假设。人口统计变量提供了辅助信息。逻辑回归方法被证明适用于广泛的场景。该研究为根据研究目标和数据性质选择测试缺失机制的方法提供了有益的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Testing the missingness mechanism in longitudinal surveys: a case study using the Health and Retirement Study
ABSTRACT Imputation or likelihood-based approaches to handle missing data assume the data are missing completely at random (MCAR) or missing at random (MAR). However, little research has examined the missingness pattern before using these imputation/likelihood methods. Three missingness mechanisms – MCAR, MAR, and not missing at random (NMAR) – can be tested using information on research design, disciplinary knowledge, and appropriate methods. This study summarized six commonly used statistical methods to test the missingness mechanism and discussed their application conditions. We further applied these methods to a two-wave longitudinal dataset from the Health and Retirement Study (N = 18,747). Health measures met the MAR assumptions although we could not completely rule out NMAR. Demographic variables provided auxiliary information. The logistic regression method demonstrated applicability to a wide range of scenarios. This study provides a useful guide to choose methods to test missingness mechanisms depending on the research goal and nature of the data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Social Research Methodology
International Journal of Social Research Methodology SOCIAL SCIENCES, INTERDISCIPLINARY-
CiteScore
7.90
自引率
3.00%
发文量
52
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信