一个𝔽p2-maximal女人的性别及其自同构

IF 0.5 4区 数学 Q3 MATHEMATICS
M. Giulietti, M. Kawakita, Stefano Lia, M. Montanucci
{"title":"一个𝔽p2-maximal女人的性别及其自同构","authors":"M. Giulietti, M. Kawakita, Stefano Lia, M. Montanucci","doi":"10.1515/advgeom-2020-0012","DOIUrl":null,"url":null,"abstract":"Abstract In 1895 Wiman introduced the Riemann surface 𝒲 of genus 6 over the complex field ℂ defined by the equation X6+Y6+ℨ6+(X2+Y2+ℨ2)(X4+Y4+ℨ4)−12X2Y2ℨ2 = 0, and showed that its full automorphism group is isomorphic to the symmetric group S5. We show that this holds also over every algebraically closed field 𝕂 of characteristic p ≥ 7. For p = 2, 3 the above polynomial is reducible over 𝕂, and for p = 5 the curve 𝒲 is rational and Aut(𝒲) ≅ PGL(2,𝕂). We also show that Wiman’s 𝔽192-maximal sextic 𝒲 is not Galois covered by the Hermitian curve H19 over the finite field 𝔽192.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An 𝔽p2-maximal Wiman sextic and its automorphisms\",\"authors\":\"M. Giulietti, M. Kawakita, Stefano Lia, M. Montanucci\",\"doi\":\"10.1515/advgeom-2020-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In 1895 Wiman introduced the Riemann surface 𝒲 of genus 6 over the complex field ℂ defined by the equation X6+Y6+ℨ6+(X2+Y2+ℨ2)(X4+Y4+ℨ4)−12X2Y2ℨ2 = 0, and showed that its full automorphism group is isomorphic to the symmetric group S5. We show that this holds also over every algebraically closed field 𝕂 of characteristic p ≥ 7. For p = 2, 3 the above polynomial is reducible over 𝕂, and for p = 5 the curve 𝒲 is rational and Aut(𝒲) ≅ PGL(2,𝕂). We also show that Wiman’s 𝔽192-maximal sextic 𝒲 is not Galois covered by the Hermitian curve H19 over the finite field 𝔽192.\",\"PeriodicalId\":7335,\"journal\":{\"name\":\"Advances in Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/advgeom-2020-0012\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2020-0012","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要1895年Wiman引入了黎曼曲面𝒲 复数域上的属6ℂ 由方程X6+Y6定义+ℨ6+(X2+Y2+ℨ2) (X4+Y4+ℨ4) −12X2Y2ℨ2=0,并证明了它的全自同构群同构于对称群S5。我们证明了这也适用于所有代数闭域𝕂 特征p≥7。对于p=2,3,上述多项式在𝕂, 对于p=5,曲线𝒲 是理性和自闭症(𝒲) ≅ PGL(2,𝕂). 我们还展示了Wiman𝔽192最大性感𝒲 不是Galois被有限域上的Hermitian曲线H19覆盖𝔽192
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An 𝔽p2-maximal Wiman sextic and its automorphisms
Abstract In 1895 Wiman introduced the Riemann surface 𝒲 of genus 6 over the complex field ℂ defined by the equation X6+Y6+ℨ6+(X2+Y2+ℨ2)(X4+Y4+ℨ4)−12X2Y2ℨ2 = 0, and showed that its full automorphism group is isomorphic to the symmetric group S5. We show that this holds also over every algebraically closed field 𝕂 of characteristic p ≥ 7. For p = 2, 3 the above polynomial is reducible over 𝕂, and for p = 5 the curve 𝒲 is rational and Aut(𝒲) ≅ PGL(2,𝕂). We also show that Wiman’s 𝔽192-maximal sextic 𝒲 is not Galois covered by the Hermitian curve H19 over the finite field 𝔽192.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Geometry
Advances in Geometry 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信