{"title":"具有接种规则的广义随机SIR流行病模型","authors":"Zhi-hui Ma, Ting Qi, Xiaohua Li","doi":"10.1515/ijnsns-2021-0448","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, a generalized stochastic SIR epidemic model with vaccination rules is presented and the threshold behavior of the proposed epidemic model is investigated. Firstly, the stability of the equilibrium of the deterministic system is considered and the corresponding conditions are obtained. Secondly, the threshold of a stochastic SIR system for the extinction and the permanence in mean of epidemic disease are investigated. The results show that a larger stochastic disturbance can cause infections diseases to go to extinction. However, for a relatively small stochastic disturbance, the evolutionary dynamics of the epidemic diseases are overwhelmingly depend on the incidence function. This implies that the stochastic disturbance and the incidence function play an important role in diseases control. To test the theoretical results, a series of numerical simulations of these cases with respect to different noise disturbance coefficients are conducted.","PeriodicalId":50304,"journal":{"name":"International Journal of Nonlinear Sciences and Numerical Simulation","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generalized stochastic SIR epidemic model with vaccination rules\",\"authors\":\"Zhi-hui Ma, Ting Qi, Xiaohua Li\",\"doi\":\"10.1515/ijnsns-2021-0448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, a generalized stochastic SIR epidemic model with vaccination rules is presented and the threshold behavior of the proposed epidemic model is investigated. Firstly, the stability of the equilibrium of the deterministic system is considered and the corresponding conditions are obtained. Secondly, the threshold of a stochastic SIR system for the extinction and the permanence in mean of epidemic disease are investigated. The results show that a larger stochastic disturbance can cause infections diseases to go to extinction. However, for a relatively small stochastic disturbance, the evolutionary dynamics of the epidemic diseases are overwhelmingly depend on the incidence function. This implies that the stochastic disturbance and the incidence function play an important role in diseases control. To test the theoretical results, a series of numerical simulations of these cases with respect to different noise disturbance coefficients are conducted.\",\"PeriodicalId\":50304,\"journal\":{\"name\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijnsns-2021-0448\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Sciences and Numerical Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2021-0448","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A generalized stochastic SIR epidemic model with vaccination rules
Abstract In this paper, a generalized stochastic SIR epidemic model with vaccination rules is presented and the threshold behavior of the proposed epidemic model is investigated. Firstly, the stability of the equilibrium of the deterministic system is considered and the corresponding conditions are obtained. Secondly, the threshold of a stochastic SIR system for the extinction and the permanence in mean of epidemic disease are investigated. The results show that a larger stochastic disturbance can cause infections diseases to go to extinction. However, for a relatively small stochastic disturbance, the evolutionary dynamics of the epidemic diseases are overwhelmingly depend on the incidence function. This implies that the stochastic disturbance and the incidence function play an important role in diseases control. To test the theoretical results, a series of numerical simulations of these cases with respect to different noise disturbance coefficients are conducted.
期刊介绍:
The International Journal of Nonlinear Sciences and Numerical Simulation publishes original papers on all subjects relevant to nonlinear sciences and numerical simulation. The journal is directed at Researchers in Nonlinear Sciences, Engineers, and Computational Scientists, Economists, and others, who either study the nature of nonlinear problems or conduct numerical simulations of nonlinear problems.