{"title":"使用酪蛋白和面筋蛋白组分获得功能成分","authors":"D. Prikhodko, A. Krasnoshtanova","doi":"10.21603/2308-4057-2023-2-569","DOIUrl":null,"url":null,"abstract":"Today, the food industry widely uses both animal and plant proteins. Animal proteins have a balanced amino acid composition, while plant proteins have more pronounced functional properties. However, both types of proteins can act as allergens, which limits their practical application. Therefore, we aimed to select optimal conditions for obtaining hypoallergenic mixtures based on casein hydrolysates and gluten proteins, which have good functional properties and a balanced amino acid composition. \nWe used wheat flour (Makfa, Russia) with 12.6% of crude protein and 69.4% of starch, as well as rennet casein (Atletic Food, Russia) with 90% of protein. The methods included the Lowry method, the Anson method, Laemmli electrophoresis, ion-exchange chromatography, and the enzyme-linked immunosorbent assay. \nProtex 6L was an optimal enzyme preparation for the hydrolysis of gliadin, while chymotrypsin was optimal for the hydrolysis of glutenin and casein. The optimal amount for all the enzymes was 40 units/g of substrate. We analyzed the effect of casein, glutenin, and gliadin enzymolysis time on the functional properties of the hydrolysates and found that the latter had relatively low water- and fat-holding capacities. The highest foaming capacity was observed in gliadin hydrolysates, while the highest emulsifying capacity was registered in casein and glutenin hydrolysates. Further, protein enzymolysis significantly decreased allergenicity, so the hydrolysates can be used to obtain functional additives for hypoallergenic products. Finally, the mixtures of casein hydrolysate and gliadin or glutenin hydrolysates had a balanced amino acid composition and a high amino acid score. Also, they retained high emulsifying and foaming capacities. \nThe study proved the need for mixtures based on wheat protein and casein hydrolysates, which have good functional properties and hypoallergenicity.","PeriodicalId":12426,"journal":{"name":"Foods and Raw Materials","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Using casein and gluten protein fractions to obtain functional ingredients\",\"authors\":\"D. Prikhodko, A. Krasnoshtanova\",\"doi\":\"10.21603/2308-4057-2023-2-569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today, the food industry widely uses both animal and plant proteins. Animal proteins have a balanced amino acid composition, while plant proteins have more pronounced functional properties. However, both types of proteins can act as allergens, which limits their practical application. Therefore, we aimed to select optimal conditions for obtaining hypoallergenic mixtures based on casein hydrolysates and gluten proteins, which have good functional properties and a balanced amino acid composition. \\nWe used wheat flour (Makfa, Russia) with 12.6% of crude protein and 69.4% of starch, as well as rennet casein (Atletic Food, Russia) with 90% of protein. The methods included the Lowry method, the Anson method, Laemmli electrophoresis, ion-exchange chromatography, and the enzyme-linked immunosorbent assay. \\nProtex 6L was an optimal enzyme preparation for the hydrolysis of gliadin, while chymotrypsin was optimal for the hydrolysis of glutenin and casein. The optimal amount for all the enzymes was 40 units/g of substrate. We analyzed the effect of casein, glutenin, and gliadin enzymolysis time on the functional properties of the hydrolysates and found that the latter had relatively low water- and fat-holding capacities. The highest foaming capacity was observed in gliadin hydrolysates, while the highest emulsifying capacity was registered in casein and glutenin hydrolysates. Further, protein enzymolysis significantly decreased allergenicity, so the hydrolysates can be used to obtain functional additives for hypoallergenic products. Finally, the mixtures of casein hydrolysate and gliadin or glutenin hydrolysates had a balanced amino acid composition and a high amino acid score. Also, they retained high emulsifying and foaming capacities. \\nThe study proved the need for mixtures based on wheat protein and casein hydrolysates, which have good functional properties and hypoallergenicity.\",\"PeriodicalId\":12426,\"journal\":{\"name\":\"Foods and Raw Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foods and Raw Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21603/2308-4057-2023-2-569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods and Raw Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21603/2308-4057-2023-2-569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Using casein and gluten protein fractions to obtain functional ingredients
Today, the food industry widely uses both animal and plant proteins. Animal proteins have a balanced amino acid composition, while plant proteins have more pronounced functional properties. However, both types of proteins can act as allergens, which limits their practical application. Therefore, we aimed to select optimal conditions for obtaining hypoallergenic mixtures based on casein hydrolysates and gluten proteins, which have good functional properties and a balanced amino acid composition.
We used wheat flour (Makfa, Russia) with 12.6% of crude protein and 69.4% of starch, as well as rennet casein (Atletic Food, Russia) with 90% of protein. The methods included the Lowry method, the Anson method, Laemmli electrophoresis, ion-exchange chromatography, and the enzyme-linked immunosorbent assay.
Protex 6L was an optimal enzyme preparation for the hydrolysis of gliadin, while chymotrypsin was optimal for the hydrolysis of glutenin and casein. The optimal amount for all the enzymes was 40 units/g of substrate. We analyzed the effect of casein, glutenin, and gliadin enzymolysis time on the functional properties of the hydrolysates and found that the latter had relatively low water- and fat-holding capacities. The highest foaming capacity was observed in gliadin hydrolysates, while the highest emulsifying capacity was registered in casein and glutenin hydrolysates. Further, protein enzymolysis significantly decreased allergenicity, so the hydrolysates can be used to obtain functional additives for hypoallergenic products. Finally, the mixtures of casein hydrolysate and gliadin or glutenin hydrolysates had a balanced amino acid composition and a high amino acid score. Also, they retained high emulsifying and foaming capacities.
The study proved the need for mixtures based on wheat protein and casein hydrolysates, which have good functional properties and hypoallergenicity.
期刊介绍:
The journal «Foods and Raw Materials» is published from 2013. It is published in the English and German languages with periodicity of two volumes a year. The main concern of the journal «Foods and Raw Materials» is informing the scientific community on the works by the researchers from Russia and the CIS, strengthening the world position of the science they represent, showing the results of perspective scientific researches in the food industry and related branches. The main tasks of the Journal consist the publication of scientific research results and theoretical and experimental studies, carried out in the Russian and foreign organizations, as well as on the authors'' personal initiative; bringing together different categories of researchers, university and scientific intelligentsia; to create and maintain a common space of scientific communication, bridging the gap between the publications of regional, federal and international level.