R. Wersal, B. Sartain, K. Getsinger, J. Madsen, J. Skogerboe, J. Nawrocki, R. Richardson, Morgan R. Sternberg
{"title":"加强对径流式水库外来水生植物的化学防治","authors":"R. Wersal, B. Sartain, K. Getsinger, J. Madsen, J. Skogerboe, J. Nawrocki, R. Richardson, Morgan R. Sternberg","doi":"10.1017/inp.2022.18","DOIUrl":null,"url":null,"abstract":"Abstract Current dam discharge patterns in Noxon Rapids Reservoir reduce concentration and exposure times (CET) of herbicides used for aquatic plant management. Herbicide applications during periods of low dam discharge may increase herbicide CETs and improve efficacy. Applications of rhodamine WT dye were monitored under peak (736 to 765 m3 s–1) and minimum (1.4 to 2.8 m3 s–1) dam discharge patterns to quantify water-exchange processes. Whole-plot dye half-life under minimal discharge was 33 h, a 15-fold increase compared with the dye treatment during peak discharge. Triclopyr concentrations measured during minimum discharge within the treated plot ranged from 214 ± 25 to 1,243 ± 36 µg L–1 from 0 to 48 h after treatment (HAT), respectively. Endothall concentrations measured during minimum discharge in the same plot ranged from 164 ± 78 to 2,195 ± 1,043 µg L–1 from 0 to 48 HAT, respectively. Eurasian watermilfoil (Myriophyllum spicatum L.) occurrence in the treatment plot was 66%, 8%, and 14% during pretreatment, 5 wk after treatment (WAT), and 52 WAT, respectively. Myriophyllum spicatum occurrence in the nontreated plot was 68%, 71%, and 83% during pretreatment, 5 WAT, and 52 WAT, respectively. Curlyleaf pondweed (Potamogeton crispus L.) occurrence in the treatment plot was 29%, 0%, and 97% during pretreatment, 5 WAT, and 52 WAT, respectively. Potamogeton crispus increased from 24% to 83% at 0 WAT to 52 WAT, respectively, in the nontreated plot. Native species richness declined from 3.3 species per point to 2.1 in the treatment plot in the year of treatment but returned to pretreatment numbers by 52 WAT. Native species richness did not change during the study in the nontreated reference plot. Herbicide applications during periods of low flow can increase CETs and improve control, whereas applications during times of high-water flow would shorten CETs and could result in reduced treatment efficacy.","PeriodicalId":14470,"journal":{"name":"Invasive Plant Science and Management","volume":"15 1","pages":"141 - 151"},"PeriodicalIF":1.3000,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving chemical control of nonnative aquatic plants in run-of-the-river reservoirs\",\"authors\":\"R. Wersal, B. Sartain, K. Getsinger, J. Madsen, J. Skogerboe, J. Nawrocki, R. Richardson, Morgan R. Sternberg\",\"doi\":\"10.1017/inp.2022.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Current dam discharge patterns in Noxon Rapids Reservoir reduce concentration and exposure times (CET) of herbicides used for aquatic plant management. Herbicide applications during periods of low dam discharge may increase herbicide CETs and improve efficacy. Applications of rhodamine WT dye were monitored under peak (736 to 765 m3 s–1) and minimum (1.4 to 2.8 m3 s–1) dam discharge patterns to quantify water-exchange processes. Whole-plot dye half-life under minimal discharge was 33 h, a 15-fold increase compared with the dye treatment during peak discharge. Triclopyr concentrations measured during minimum discharge within the treated plot ranged from 214 ± 25 to 1,243 ± 36 µg L–1 from 0 to 48 h after treatment (HAT), respectively. Endothall concentrations measured during minimum discharge in the same plot ranged from 164 ± 78 to 2,195 ± 1,043 µg L–1 from 0 to 48 HAT, respectively. Eurasian watermilfoil (Myriophyllum spicatum L.) occurrence in the treatment plot was 66%, 8%, and 14% during pretreatment, 5 wk after treatment (WAT), and 52 WAT, respectively. Myriophyllum spicatum occurrence in the nontreated plot was 68%, 71%, and 83% during pretreatment, 5 WAT, and 52 WAT, respectively. Curlyleaf pondweed (Potamogeton crispus L.) occurrence in the treatment plot was 29%, 0%, and 97% during pretreatment, 5 WAT, and 52 WAT, respectively. Potamogeton crispus increased from 24% to 83% at 0 WAT to 52 WAT, respectively, in the nontreated plot. Native species richness declined from 3.3 species per point to 2.1 in the treatment plot in the year of treatment but returned to pretreatment numbers by 52 WAT. Native species richness did not change during the study in the nontreated reference plot. Herbicide applications during periods of low flow can increase CETs and improve control, whereas applications during times of high-water flow would shorten CETs and could result in reduced treatment efficacy.\",\"PeriodicalId\":14470,\"journal\":{\"name\":\"Invasive Plant Science and Management\",\"volume\":\"15 1\",\"pages\":\"141 - 151\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Invasive Plant Science and Management\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1017/inp.2022.18\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Invasive Plant Science and Management","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/inp.2022.18","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Improving chemical control of nonnative aquatic plants in run-of-the-river reservoirs
Abstract Current dam discharge patterns in Noxon Rapids Reservoir reduce concentration and exposure times (CET) of herbicides used for aquatic plant management. Herbicide applications during periods of low dam discharge may increase herbicide CETs and improve efficacy. Applications of rhodamine WT dye were monitored under peak (736 to 765 m3 s–1) and minimum (1.4 to 2.8 m3 s–1) dam discharge patterns to quantify water-exchange processes. Whole-plot dye half-life under minimal discharge was 33 h, a 15-fold increase compared with the dye treatment during peak discharge. Triclopyr concentrations measured during minimum discharge within the treated plot ranged from 214 ± 25 to 1,243 ± 36 µg L–1 from 0 to 48 h after treatment (HAT), respectively. Endothall concentrations measured during minimum discharge in the same plot ranged from 164 ± 78 to 2,195 ± 1,043 µg L–1 from 0 to 48 HAT, respectively. Eurasian watermilfoil (Myriophyllum spicatum L.) occurrence in the treatment plot was 66%, 8%, and 14% during pretreatment, 5 wk after treatment (WAT), and 52 WAT, respectively. Myriophyllum spicatum occurrence in the nontreated plot was 68%, 71%, and 83% during pretreatment, 5 WAT, and 52 WAT, respectively. Curlyleaf pondweed (Potamogeton crispus L.) occurrence in the treatment plot was 29%, 0%, and 97% during pretreatment, 5 WAT, and 52 WAT, respectively. Potamogeton crispus increased from 24% to 83% at 0 WAT to 52 WAT, respectively, in the nontreated plot. Native species richness declined from 3.3 species per point to 2.1 in the treatment plot in the year of treatment but returned to pretreatment numbers by 52 WAT. Native species richness did not change during the study in the nontreated reference plot. Herbicide applications during periods of low flow can increase CETs and improve control, whereas applications during times of high-water flow would shorten CETs and could result in reduced treatment efficacy.
期刊介绍:
Invasive Plant Science and Management (IPSM) is an online peer-reviewed journal focusing on fundamental and applied research on invasive plant biology, ecology, management, and restoration of invaded non-crop areas, and on other aspects relevant to invasive species, including educational activities and policy issues. Topics include the biology and ecology of invasive plants in rangeland, prairie, pasture, wildland, forestry, riparian, wetland, aquatic, recreational, rights-of-ways, and other non-crop (parks, preserves, natural areas) settings; genetics of invasive plants; social, ecological, and economic impacts of invasive plants and their management; design, efficacy, and integration of control tools; land restoration and rehabilitation; effects of management on soil, air, water, and wildlife; education, extension, and outreach methods and resources; technology and product reports; mapping and remote sensing, inventory and monitoring; technology transfer tools; case study reports; and regulatory issues.